
AspireRFID Architecture
AspireRFID Architecture

• 1 Hardware Abstraction Layer (HAL)
• 2 Reader Core Proxy (RCP)
• 3 Filtering & Collection Server (ALE)
• 4 Business Event Generator (BEG)
• 5 Information Sharing Repository (EPCIS)
• 6 Connector Application (Connector)
• 7 Management
• 8 Actuators
• 9 Integrated Development Environment (AspireRfidIDE)

Hardware Abstraction Layer (HAL)

The role of this layer is to unify the way the ASPIRE middleware interacts with the RFID readers from
multiple vendors that support varying protocols. This is based on the introduction of a hardware abstraction
layer (HAL) and the provision of a fixed instruction set to upstream middleware layers which consume RFID
readings from the hardware.

Specifications that satisfy the need for a norm at this level are the EPCglobal Reader Protocol (RP), the
EPCglobal Lower Level Reader Protocol (LLRP). These protocols define the standard bindings through
witch an application can send messages in a standardized format.

The methods of communication between the HAL and the hardware itself vary, depending on the hardware
vendor and it may require a serial connection, an Ethernet connection, etc. The protocols of communication
may also vary from a raw TCP (Transmission Control Protocol) connection, to SSL (Secure Sockets Layer)
and HTTP (Hypertext Transfer Transport Protocol). The same will apply for the command and message
encodings, which may be text, XML or binary.

The Hardware Abstraction shown in the Figure Below defines the interface between the HAL, the F&C
server, the Reader Core or any other application using the HAL. It standardises access to various readers
and simulators of readers. This allows uniform usage. The readers and simulators become interchangeable

Aspire Wiki - ObjectWeb - AspireRfidArchitecture

- 1 -

http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/AspireRfidArchitecture
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/HAL
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/ReaderCoreProxy
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/Filtering%26Collection
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/BEG
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/EpcisRepository
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/Connector
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/AspireIDE
http://wiki.aspire.objectweb.org/xwiki/bin/download/Main.Documentation/AspireRfidArchitecture/aspireArchitectureNew6.jpg
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/HAL


because the code specific to the reader is part of the HAL and not of the application. The implementations of
the Hardware Abstraction interface are divided into multiple modules, one for the simulators and one for
each reader manufacturer. A module can contain one or multiple reader controllers.

Reader Core Proxy (RCP)

In order to transform non EPC Reader Protocol readers into compliant readers we are using a Reader Core
Proxy application, which is used (as shown in the Figure above) as a mediator between a reader supporting
protocol "X" and the corresponding F&C Reader Protocol Interface. By deploying the appropriate HAL
module at the Reader Core we make whatever reader compliant to RP. Every reader with an implementation
of the Hardware Abstraction interface can be controlled over the Reader Protocol.

The core reader support TCP and HTTP for transporting reader protocol messages, while the message
content can be either XML or Text. In addition, it support synchronous and asynchronous messaging
(through the reader's protocol Notification Channels mechanisms). Furthermore, support for other reader
protocol characteristics, such as triggers, data selectors must be provided.

Filtering & Collection Server (ALE)

Aspire Wiki - ObjectWeb - AspireRfidArchitecture

- 2 -

http://wiki.aspire.objectweb.org/xwiki/bin/download/Main.Documentation/AspireRfidArchitecture/ASPIRE_HAL_Connections.jpg
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/ReaderCoreProxy
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/Filtering%26Collection


In the scope of large scale deployments, RFID systems generate an enormous number of object reads.
Many of those reads represent non-actionable "noise." To balance the cost and performance of this with the
need for clear accountability and interoperability of the various parts, the design of the ASPIRE middleware
seeks to:

• Drive as much filtering and counting of reads as low in the architecture as possible.
• Minimize the amount of "business logic" embedded in the Tags.

The Filtering and Collection Middleware is intended to facilitate these objectives by providing a flexible
interface (ALE (Application Level Events) interface) to a standard set of accumulation, filtering, and counting
operations that produce "reports" in response to client "requests." The client will be responsible for
interpreting and acting on the meaning of the report. Depending on the target deployment the client of the
ALE interface may be a traditional "enterprise application," or it may be new software designed expressly to
carry out an RFID-enabled business process which operates at a higher level than the "middleware" that
implements the ALE interface. In the scope of the ASPIRE project, the Business Event Generation (BEG)
middleware (described later) would naturally, consume the results of ALE filtering. However, there might be
deployment scenarios where clients will interface directly to the ALE filtered streams of RFID data.

Once the readers capture relevant tag data they notify the middleware which combines the data arriving
from different readers in a report that is sent according to a pre-determined schedule to the subscribed
applications. Since the middleware receives data from multiple readers, it provides specific filtering
functionality depending on the different already defined specifications. So redundant events from different
readers observing the same location are not included to the despatched report accomplishing the reduction
of filtering and aggregation required to the registered application interpreting the captured RFID data.

Business Event Generator (BEG)

Aspire Wiki - ObjectWeb - AspireRfidArchitecture

- 3 -

http://wiki.aspire.objectweb.org/xwiki/bin/download/Main.Documentation/AspireRfidArchitecture/ALE.jpg
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/BEG


The architecture introduces a Business Event Generator (BEG) module between the F&C and Information
Sharing (e.g., EPC-IS) modules. The role of the BEG is to automate the mapping between reports stemming
from F&C and IS events. Instead of requiring developers to implement the mapping logic, the BEG enables
application builders to configure the mapping based on the semantics of the RFID application.

With the help of AspireRfid IDE by describing the company's business processes and its underlying
business infrastructure the required business events that constitutes a company's business functionality are
created and stored at the RFID repository that Business Event Generator engine exploits to define its
functionality. In EPC terms, BEG can be seen as a specific instance of an EPC-IS capturing application,
which parses EPC-ALE reports, fuses these reports with business context data using the assigned business
event from the company's business metadata to serve as guide and accordingly prepares EPC-IS compliant
events. The latter events are submitted to the EPC-IS Repository, based on an EPC-IS capture interface
and related bindings (e.g., HyperText Transfer Protocol (HTTP)/ Java Messaging Service (JMS). The
specification of the BEG is a valuable addition over existing RFID middleware architectures and platforms.

Information Sharing Repository (EPCIS)

Aspire Wiki - ObjectWeb - AspireRfidArchitecture

- 4 -

http://wiki.aspire.objectweb.org/xwiki/bin/download/Main.Documentation/AspireRfidArchitecture/BEG.jpg
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/EpcisRepository


At the heart of the architecture is the EPC-IS repository. The ASPIRE Information Sharing repository is
responsible for receiving application-agnostic RFID data from the filtering & collection middleware through
the Business Event Generation (BEG) application and store the translated RFID data in corresponding
business events. These events carry the business context as well (e.g., they refer to particular companies,
business locations, business processes etc.). Moreover it makes business events and master data available
and accessible to other upstream applications thru the query interface.

Generally, the ASPIRE information sharing repository is dealing with two kinds of data:

• RFID event data i.e. data arising in the course of carrying out business processes. These data change
very frequently, at the time scales where business processes are carried out.

• Master/company data, i.e. additional data that provide the necessary context for interpreting the event
data. These are data associated with the company, its business locations, its read points, as well as
with the business steps comprising the business processes that this company carries out.

At a glance Information Services of the ASPIRE Information Sharing middleware itself consists of three parts
a capture interface that provides web services for storing data, a repository that provides persistence and
query interface that provides web services that retrieves the business events/master data from the
repository.

Connector Application (Connector)

Aspire Wiki - ObjectWeb - AspireRfidArchitecture

- 5 -

http://wiki.aspire.objectweb.org/xwiki/bin/download/Main.Documentation/AspireRfidArchitecture/epcis.jpg
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/Connector


RFID middleware components described in the previous paragraphs provide a foundation for translating raw
RFID streams to meaningful business events comprising business context such as where a tag was seen, at
what time and in the scope of which process. Enterprises can then leverage these business events through
their legacy IT systems (e.g., ERPs, WMS, corporate databases), which are used to support their business
processes. To this end, there is a clear need for interfacing these legacy systems, with the information
sharing repositories, established and populated as part of the RFID deployment. Interfacing between IT
systems and the information sharing repository, as well as other middleware blocks of the RFID deployment
is realized through specialized middleware components that are called "connectors".

The main purpose of connector components are to abstract the interface between the ASPIRE information
sharing repository and enterprise information systems. Hence, connectors offer APIs, that enable proprietary
enterprise information systems to exchange business information with the ASPIRE RFID middleware
system.

Connector therefore provides:

• Support for services and events: Composite applications can call out to existing functionality as a set
of services, and to be notified when a particular event type (for example, "purchase order inserted,"
"employee hired") occurs within an existing application.

• Service abstraction: All services have some common properties, including error handling, syntax, and
calling mechanisms. They also have common access mechanisms such as JCA (Java Connector
Architecture), JDBC, ODBC (Object Database Connectivity), and Web services, ideally spanning

Aspire Wiki - ObjectWeb - AspireRfidArchitecture

- 6 -

http://wiki.aspire.objectweb.org/xwiki/bin/download/Main.Documentation/AspireRfidArchitecture/ConnectorLight.jpg


different platforms. This makes the services more reusable, while also allowing them to share
communications, load balancing, and other non-service-specific capabilities.

• Functionality abstraction: Individual services are driven by metadata about the transactions that the
business needs to execute.

• Process management: Services embed processes, and process management tools call services.
Hence, connectors support the grouping of several service invocations to processes.

Management
The architecture specifies also implementation of end-to-end (e2e) management functionality based on JMX
(Java Management Extension) technology. To this end, a JMX wrapper is specified for each middleware and
hardware component. JMX wrappers interface to underlying readers based on the Simple Network
Management Protocol (SNMP) and the Reader Management (RM) protocol, while they interface to
middleware components (e.g., ALE, BEG, Connector) using MBeans that access their low-level control
properties. Based on these JMX wrappers composite sophisticated management applications can be
implemented. Management applications can be used to interface and control actuators as well. Based on
JMX, actuator control commands can be issued upon the occurrence of certain events at any middleware
layer.

Actuators
The actuator control framework will define certain interfaces and connectors that third party applications will
be able to utilize in order to successfully interact with analogue or digital devices, based on sensor events.
These sensors may either be RFID or other ASPIRE supported physical sensors. Using this framework the
application will be able to register an event handler that will, for example, interact with a flashlight when a
specific group of tags pass through a RFID aggregation gate.

Integrated Development Environment (AspireRfidIDE)

As far as ease of development and deployment is concerned, the architecture specifies the existence of an
IDE enabling the visual management of all configuration files and meta-data that are required for the
operation of an RFID solution. These include:

• The Physical Reader Configuration Editor to configure physical readers and their operational
parameters and environments.

• The Logical Reader Configuration Editor which will support the definition of logical readers (LLRP, RP,

Aspire Wiki - ObjectWeb - AspireRfidArchitecture

- 7 -

http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/AspireIDE
http://wiki.aspire.objectweb.org/xwiki/bin/download/Main.Documentation/AspireRfidArchitecture/programmabilityTooling.jpg


HAL and Simulator readers).
• The Reading Specifications Editor which will enable editing, as well as management of F&C server

Filtering Specifications.
• The F&C Commands Execution which will have as an objective to provide a control client to execute

Application Level Event specification (ALE) commands on a reader or component that implements the
ALE specification.

• The Connector Configurator which will be able to interact with the Connector application to reveal all
its functionalities and configurations. It should enable configuration of connectors to different systems
and databases.

• The Master Data Editor (with support for Elementary Business Process Description) which will enable
users and/or consultants to edit enterprise data including information about the company's location, its
business locations, readpoints, as well as its business processes.

• And the Business Prosess Workflow Management Editor which can offer to business users and RFID
consultants a graphical user interface for manipulating complex business processes, that are
composed as workflows of elementary business processes. The workflow management tool will
leverage (though. using/ invoking) the functionality of the above tools in order to support RFID
deployments in accordance to particular business processes.

AspireRFID Architecture (en)
Creator: xwiki:XWiki.nkef Date: 2009/01/30 11:02
Last Author: xwiki:XWiki.nkef Date: 2011/03/02 19:12
Copyright (c) 2008-2010, Aspire

Aspire Wiki - ObjectWeb - AspireRfidArchitecture

- 8 -

http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/AspireRfidArchitecture
http://www.fp7-aspire.eu/

