
ASPIRE FP7 215417

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the ASPIRE Consortium. Neither
this document nor the information contained herein shall be used, duplicated or

communicated by any means to any third party, in whole or in parts, except with prior written
consent of the ASPIRE consortium.

Collaborative Project

ASPIRE

Advanced Sensors and lightweight Programmable
middleware for Innovative Rfid Enterprise applications

FP7 Contract: ICT-215417-CP

WP4 – RFID Middleware programmability

Public report - Deliverable

ASPIRE Programmable Engine (APE) (Final Version)

Due date of deliverable: M39
Actual Submission date: 03.05.11

Deliverable ID: WP4/D4.2b

Deliverable Title: ASPIRE Programmable Engine (APE) (Final Version)

Responsible partner: AIT

Contributors:

Nikos Kefalakis - AIT
John Soldatos - AIT
Mathieu David - AAU
Sofyan M. Yousuf – OSI
Humberto Morán – OSI
Didier Donsez - UJF
Kiev Gama – UJF

Estimated Indicative
Person Months:

36

Start Date of the Project: 1 January 2008 Duration: 42 Months

Revision: 1.3
Dissemination Level: PU

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 2/80

Document Information

Document Name: ASPIRE Programmable Engine (APE) (Final Version)
Document ID: WP4/D4.2b
Revision: B1.3
Revision Date: 3 May 2011
Author: AIT
Security: PU

Approvals

 Name Organization Date Visa

Coordinator Neeli Rashmi Prasad CTIF-AAU 03.05.11 Approved

Technical
Coordinator

John Soldatos AIT 18.04.11 Approved

Quality Manager Anne Bisgaard Pors CTIF-AAU 20.04.11 Approved

Reviewers

Name Organization Date Comments Visa

Humberto Morán OSI Jan 2011 First review
Not ready for
submission

Humberto Morán OSI April 2011 Final review

Ready for
submission,

with
comments

Document history

Revision Date Modification Authors

a_0.1 02 Nov 09 ToC Nikos Kefalakis

a_0.2 10 Nov 09 ToC Finalization and Chapters Assign. Nikos Kefalakis

a_0.3 27 Nov 09 Added Section 5, Section 6, Section 8 Nikos Kefalakis

a_0.4 09 Dec 09 Added Section 2 Mathieu David

a_0.5 10 Dec 09 Augmented Section 2 Sofyan M. Yousuf

a_0.6 11 Dec 09 Added Section 10.1 Yongming Luo

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 3/80

a_0.7 15 Dec 09 Added Section 9, Section 10. Nikos Kefalakis

a_0.8 17 Dec 09 Added Section 7 Nikos Kefalakis

a_0.9 17 Dec 09 Added Section 1 John Soldatos

a_1.0 18 Dec 09 Added Section 5.3 Didier Donsez, Kiev Gama

a_1.1 18 Dec 09 Added Section 11, Reviewed the Doc. Sofyan M. Yousuf

a_1.2 18 Dec 09
Added Section 3, 5.1, Replaced 5.3.1
and 5.3.2, Final Corrections.

Nikos Kefalakis

b_0.1 20 Jan 11 First Draft of D4.2b Nikos Kefalakis

b_0.2 25 Jan 11 Review/Commented the Doc. Humberto Morán

b_0.3 26 Jan 11
Augmented Introduction, conclusions,
acronyms

Humberto Morán

b_0.4 10 Feb 11 Corrections following review Comments Nikos Kefalakis

b_0.5 21 Feb 11 Enhanced Section 3 Nikos Kefalakis

b_0.6 01 Mar 11
Added Section 4, Enhanced/Updated
Section 9.1

Nikos Kefalakis

b_0.7 07 Mar 11 Enhanced/Updated Section 5 Nikos Kefalakis

b_0.8 11 Mar 11 Added new Section 6 Nikos Kefalakis

b_0.9 31 Mar 11 Enhanced/Updated Section 7 Nikos Kefalakis

b_1.0 03 Apr 11
Updated Section 2, Corrections for final
internal review

Nikos Kefalakis

b_1.1 04 Apr 11 Final review Humberto Morán

b_1.2 05 Apr 11
Updated Section 11, Final corrections
considering review comments

Nikos Kefalakis

B_1.3 03.05.11 Approved Neeli Prasad

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 4/80

Content

Section 1 Executive Summary ... 6

Section 2 Introduction .. 8

Section 3 AspireRFID Process Description Language (APDL)10

3.1 The Required Components/Layers ..11

3.2 Defining APDL’s Business Process Types ...12

3.3 Generating Business Logic ..13

3.4 Specification Structure ...15

Section 4 Methodology ..18

Section 5 Role within the AspireRFID Architecture ...19

5.1 Filtering and Collection ..20
5.1.1 ALE Client ...20
5.1.2 ALE-LR Client ...21

5.2 Business Event Generator ...21
5.2.1 Functionality and relation with the Programmable engine22

5.3 EPC Information Services ..23
5.3.1 Capture Client ...23
5.3.2 Query Client ..25

Section 6 PE Interfaces ...26

6.1 OLCBProcControl API ..26
6.1.1 Error Conditions ..28

6.2 CLCBProcControl API ..28
6.2.1 Error Conditions ..30

6.3 EBProcControl API ...30
6.3.1 Error Conditions ..32

Section 7 PE API Implementation ...33

7.1 register ..33
7.1.1 APDL Analysis and System Configuration ...34

7.1.1.1 ALE-LR Setup ...35
7.1.1.2 ALE Setup ...36
7.1.1.3 EPC Information Service Setup ...36
7.1.1.4 BEG Setup ..37

7.1.2 Final Step and Result ..37

7.2 getOLCBProc ..38

7.3 update ..39

7.4 stop ..41

7.5 start ..42

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 5/80

7.6 unregister ..44

Section 8 How PE Changed the AspireRFID Configuration Process46

8.1 Configuring in the Conventional Way..46

8.2 Configuring in the Programmable Engine Way ..47

Section 9 PE’s Examples ..49

9.1 Registering an OLCBProc Example ...49
9.1.1 Describing the Problem ...49
9.1.2 Solution Requirements ..49
9.1.3 Registering the APDL Document ...49

9.1.3.1 ALE-LR Setup ...52
9.1.3.2 ALE Setup ...53
9.1.3.3 EPC Information Service Setup ...54
9.1.3.4 BEG Setup ..55
9.1.3.5 Building the Example’s APDL file using the BPWME55
9.1.3.6 Process Description...57

Section 10 Business Process Workflow Management Editor (BPWME) Introduction
 59

10.1 Graphical Modelling Framework ..60

Section 11 Conclusions ...63

Section 12 List of Figures ...64

Section 13 List of Tables ...65

Section 14 List of Acronyms ...66

Section 15 Acknowledgements ...68

Section 16 References and bibliography ...69

Appendix I APDL XML Schema ..71

Appendix II APDL files ...73

Register APDL Example ...73

Appendix III Soap Interfaces ...79

PE “olcbproccontrol” Soap Interface ..79

PE “clcbproccontrol” Soap Interface ..79

PE “ebproccontrol” Soap Interface ...80

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 6/80

Section 1 Executive Summary

One of the main objectives of ASPIRE is the research, specification and
implementation of domain-specific languages (notably XML-based) enabling the

specification of programmable / configurable RFID solutions, along with
supporting run-time software enabling their implementation as part of the
ASPIRE middleware infrastructure.

A background document, ASPIRE‟s D4.4 (submitted in its initial version in

September 2009), focused on the specifications of APDL (AspireRFID Process
Description Language); a domain specific language for describing/configuring

RFID solutions. Based on such specifications, this deliverable is devoted to the
description of a run-time middleware infrastructure able to translate and convert
APDL into a number of configuration files, which are in turn used in the

deployment of an APDL solution over the ASPIRE middleware infrastructure. This
run-time middleware is conveniently called ASPIRE Programmable Engine (APE)

or (in short) PE (Programmable Engine).

The PE bridges APDL with the underlying ASPIRE middleware infrastructure and

allows the “hiding” the lower-level details of the ASPIRE middleware from the
APDL developer. Thanks to the APDL and its respective PE, RFID developers are

capable of assembling and configuring RFID solutions using a high-level language
(using appropriate tools) in a way that is totally transparent to the low-level
middleware libraries (such as those enabling filtering, collection and business

event generation). The PE is closely affiliated to the APDL (tight coupling
relationship), given that the PE is bound to interwork with specific feature and

functionalities of the APDL and vice versa. There is also a direct relationship
between the PE and the ASPIRE middleware architecture, resulting from the fact
that the PE operates over the ASPIRE open source middleware infrastructure (the

later provided in the scope of the AspireRFID OSS project – see:
http://wiki.aspire.ow2.org/).

In this context, the present deliverable illustrates the interfaces of the PE to the
middleware building blocks of the ASPIRE architecture.

The PE comprises six types of functionalities: (a) “Register” functionalities that

enable the registering and subsequent mapping of an APDL compliant instance to
the ASPIRE middleware configuration files constituting the RFID solution, (b)
“Get” functionalities that enable the retrieval of an RFID solution to an APDL file

for subsequent editing, (c) “Update” functionalities that enable the user to
update a priory registered APDL file (d) “Stop” functionalities that enable the

user to stop a specific business process, (e) “Start” functionalities that enable the
user to start a priory stop Business process, and (f) “Unregister” functionalities
that enable a user to stop and clean the running instance from a specific priory

registered specification. This deliverable provides details on all six functionalities
and their relevant APIs (Application Programming Interfaces).

http://wiki.aspire.ow2.org/

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 7/80

ASPIRE also envisages the use of tools for editing APDL and the PE configuration
parameters. This deliverable presents a proof of concept of such tools, with

particular emphasis on the Business Process Workflow Management Editor
(BPWME), which allows the graphical modelling of APDL-compliant RFID based

business processes. For improved readability, this deliverable provides concrete
examples and use cases associated with the operation of the PE.

To justify the approach, this document includes a preliminary evaluation of the
suggested approach to the development and deployment of RFID through

programmability. Such evaluation reveals that developing an RFID solution using
a PE based approach results in a significant reduction of the number of steps

required from inception to deployment. Specifically, the deliverable elaborates on
the differences in complexity and steps required for two different configuration
methods, one involving the use of the PE and the other the conventional

integration of RFID solutions. It also reveals some limitations of the general PE
approach; particularly that it is not directly applicable to domains other than

logistics and supply chain management.

This deliverable, which is the enhanced version of the earlier deliverable D4.2a,

describes the functionalities offered by the PE and incorporates the latest
developments of the APDL (detailed in ASPIRE‟s deliverable D4.4).

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 8/80

Section 2 Introduction

RFID has advanced significantly over the past few decades. Rapid developments
in low cost microelectronics and radio frequency transceivers have considerably

reduced size and costs of high-frequency and ultra-high frequency transceivers,
allowing longer reading ranges and faster reading rates than before. Such
developments enable novel applications with higher mobility and larger number

of tagged items. In turn, these applications require a more robust and complex
middleware platform offering adaptable functionality at different layers of the

communication architecture, for example to operate in different business
contexts. Such complex specifications generate several research challenges in

middleware design, such challenges translating into a high entry cost for RFID
technology adopters, which in turn hinder the ability of SME‟s to participate in
the RFID revolution.

ASPIRE offers a radical change in the current RFID paradigm through innovative,

programmable, royalty-free, lightweight and privacy friendly middleware. ASPIRE
solutions are open source and royalty free, therefore bringing an important
reduction of the Total Cost of Ownership. They are also programmable and

lightweight, therefore bringing backwards compatibility with current IT SME
infrastructure. Additionally, ASPIRE has been designed as privacy friendly which

means that present and future RFID privacy features can be easily implemented
using the platform. Finally, ASPIRE is a vehicle for realizing the proposed switch
in the current RFID deployment paradigm. Portions (i.e. specific libraries) of the

ASPIRE middleware are hosted and run on low-cost RFID-enabled microelectronic
systems, and so further lower the TCO in mobility scenarios (i.e. mobile

warehouses, trucks). In the long term, the ASPIRE middleware platform will be
combined with other innovative European developments in the area of ubiquitous
RFID-based sensing (e.g. ambient sensing [temperature, humidity, pressure,

acceleration], mobile, low-cost); therefore enabling novel business cases source
of significant productivity gains.

This new middleware paradigm will be particularly beneficial to European SMEs,
currently experiencing significant cost barriers to RFID deployment. The ASPIRE

open source nature aims to offer immense flexibility and maximum freedom to
potential RFID developers and implementers. This versatility includes the

freedom of choice of RFID hardware (notably tags and interrogators).

A great deal of ASPIRE research has been devoted towards development of the

ASPIRE middleware infrastructure with programmability. The aim was to allow
development and reuse of RFID solutions with minimal coding effort. The core of

the ASPIRE programmability is therefore an engine capable of mapping high level
(business semantics) to low-level middleware abstractions and information flows
between them. This engine orchestrates tags, readers, filters and events into

RFID solutions.

The programmability features of ASPIRE aim to maximise the configurability of
ASPIRE provided solution. The ASPIRE programmability functionality offers RFID

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 9/80

developers and consultants the possibility of deploying RFID solutions through
high-level company meta-data (including the business context of its RFID

deployments), rather than through low-level programming.

However, the achievement of programmability poses important technical and
research challenges. Firstly, it needs to provide an intuitive abstraction for

implementation options without losing generality. Secondly, it needs to be
“reversible”, therefore allowing the re-programmability of existing
implementations. Finally, it needs to be “portable”, separating the abstraction of

the program from the implementation details.

This deliverable presents the specifications of the ASPIRE Programmable Engine
(APE). This module is an interface between the user and the ASPIRE middleware
that enables the deployment of a specific scenario. From a well defined business

scenario, the user can express the different actions in a business process
language, the AspireRFID Process Description Language (APDL), that the

Programmable Engine (PE) converts to a language understandable by the ASPIRE
middleware.

The Programmable Engine is a run-time middleware module which takes as input
an APDL XML file and be able to:

 Register which enables the registering and subsequent mapping of an

APDL compliant instance to the ASPIRE middleware configuration files

constituting the RFID solution,
 Update which enables the user to update a priory registered APDL file,

 Get functionalities enabling the retrieval of an RFID solution to an APDL
file for subsequent editing,

 Stop that enables the user to stop a specific business process,

 Start which enables the user to start a priory stop Business process, and
 Unregister that enables a user to stop and clean the running instance

from a specific priory registered specification.

This deliverable briefly presents the AspireRFID Process Description Language in

Section 3, and the methodology for designing the PE at Section 4. The relation
between the Programmable Engine and the other components of the ASPIRE

middleware is presented in Section 5. The specifications of the Programmable
Engine are described in Section 6 where the different PE‟s APIS are analyzed and
in Section 7 the API implementation is presented. How the PE Changed the

AspireRFID Configuration Process is presented in Section 8, and an example of
the PE registering follows in Section 9. A brief introduction of the Business

Process Management Workflow Editor (BPMWE) is presented in Section 10.
Finally Section 11 presents the conclusions of this deliverable.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 10/80

Section 3 AspireRFID Process Description Language (APDL)

The ASPIRE Programmable Meta-Language is a language created within ASPIRE
with the intention to be able to fully describe an Open Loop Composite (RFID)

Business Process (OLCBProc) and ultimately be used from the Programmable
Engine to configure an AspireRFID middleware instance to serve the described
Business Processes. Due to the fact that AspireRFID Process Description

Language (APDL) [24] [36] is closely bound with the Programmable engine it is
crucial to understand it. So in this section we will review the APDL towards

describing its logic, main components and structure.

APDL is oriented towards solutions that comply with the EPCglobal Architecture.
According to this architecture [17] the modules that compose an end-to-end
RFID solution can be logically considered to be layered as depicted in Figure 1.

EPCIS Accessing Application

EPCIS Query Interface

EPCIS Repository

EPCIS Capture Interface

EPCIS Capturing Application

Filtering & Collection (ALE) Interface

Filtering & Collection

Reader Interface

RFID Reader

Reader

Management

Interface

Tag Air Interface (UHF Class 1 Gen 2, et al)

ALE Tag

memory,

Logical Reader,

and Access

Control APIs

Reader

Management

H/W or S/W role

Interface

(EPCglobal Standard)

ECSpecs, LRSpecs

APDL Solution

Management

Legend

Master Data

E
P

C
g

lo
b

a
l S

ys
te

m
 A

rc
h

ite
ct

u
re

Figure 1: Middle Middleware configuration using APDL [17]

Hence, according to the EPCglobal architecture, a middleware solution requires
the combination and orchestration of various specifications towards:

 Defining the Event Cycle Specifications (ECSpecs) [2],
 Defining the Logical Reader Specifications (LRSpecs) [2],

 And, finally, providing the EPCIS (Electronic Product Code Information
Sharing) [8] with the required Master Data (EPCIS Master Data Document)

that partially manages how Application Level Events (ALE) [2], will be
stored in the EPCIS repository.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 11/80

3.1 The Required Components/Layers

Each of the above-mentioned specifications is associated with a number of RFID
middleware modules and data elements, which collectively comprise an RFID

solution.

In particular, at the F&C (Filtering and Collection) [2] module one must configure

the ECSpec, which is a complex type that describes an Event Cycle [2] and one
or more reports to be produced from it. An ECSpec also includes the Logical

Reader list which is going to be used for the denoted Event Cycle. The LRSpecs
specification is accordingly used to describe Logical Readers configurations.

Layer Master Data Vocabularies are defined at the EPCIS [8]. The Master Data
Vocabularies contain additional data that provides the necessary context for

interpreting Event Data [8]. The most important Master Data vocabulary type for
describing an RFID Business process is the BusinessTransactionTypeID which is
capable of enclosing all the required information for identifying a particular

business transaction. In Table 1 the BusinessTransactionID‟s attributes are
shown.

Attribute Name Attribute URI

EventName [2] urn:epcglobal:epcis:mda:event_name

EventType [2] urn:epcglobal:epcis:mda:event_type

BusinessStep [2] urn:epcglobal:epcis:mda:business_step

BusinessLocation [2] urn:epcglobal:epcis:mda:business_location

Disposition [2] urn:epcglobal:epcis:mda:disposition

ReadPoint [2] urn:epcglobal:epcis:mda:read_point

TransactionType [2] urn:epcglobal:epcis:mda:transaction_type

Action [2] urn:epcglobal:epcis:mda:action

Table 1: Business Transaction ID Attributes

In order to integrate the Information Sharing layer with the F&C layer (Figure 1),

we introduce a capturing application called Business Event Generator (BEG) [22]
[23]. BEG lies between the F&C and Information Service (e.g., EPC-IS) modules.

The role of the BEG is to automate the mapping between reports stemming from
F&C and IS events. The Business event generation module associates Master

Data, stored at the EPCIS repository, with RFID tag data which are produced in
the form of Event Cycle Reports (ECReports [2]) from the Filtering and collection
module. Sources of data include filtered, collected EPC (Electronic Product Code)

tag data obtained from various RFID physical sources. The RFID data are
captured from BEG module and eventually are stored at the Information Service

repository in the form of RFID Events (Object, Quantity, Aggregation, and
Transaction Events) as defined in the EPC-IS specification [8].

The BEG module recognizes the occurrence of EPC-related business events, and
delivers these as EPCIS data. BEG facilitates the abovementioned middleware

modules and data elements to generate and store to the EPCIS repository
context aware RFID Event Data. Low level business processes creation
requirements are defined, as shown in Figure 2 and Figure 3, to give the ability

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 12/80

to combine them together, in order to describe a complete business transaction
(e.g. Receiving, Shipping, Pick & Pack, etc). These Low Level business processes

that also contain all the above described specifications are characterized as
Elementary Business Process (EBProc).

3.2 Defining APDL’s Business Process Types

Figure 2 depicts an example of the concept of decomposing a business process

into a number of RFID business events. We can see that a “Moving” Business
Process could be analyzed in a number of RFID events that we call Elementary

Business Processes.

Figure 2: Decomposing an Inter-enterprise Business process

In the APDL Language we have used concepts/definitions, for mapping complex

and basic Supply Chain Management (SCM) business processes, which are
described below in the context of the following example. Figure 3 illustrates an

example of a supply chain of consumer items (in this case bottles) all the way
from the moment they are shipped from the factory, going through the
warehouse premises, up to the shopping centre.

We call this entire process Open Loop Composite Business Process (OLCBProc).

Open-Loop in the context of APDL stands for business processes that are
executed throughout the lifecycle of a supply chain. For instance, an Open Loop
procedure refers to a supply chain whose objects of interest move from any

location in the factory till a retail store shelf regardless to whether these business
locations belong to the same company or no.

An OLCBProc can be broken into many Close Loop Composite Business Processes
(CLCBProc). A CLCBProc is related with the Business Location that a group of

transactions takes place and the company that “owns” these transactions. So at
Figure 3 example at the Factory‟s Business location we define one CLCBProc which

contains all the company‟s transaction for the specific physical location.

A CLCBProc can further be divided into the finest business entity we define called
Elementary Business Processes (EBProc). In the example in Figure 3, at the

Factory‟s CLCBProc we define three EBProcs which are Commission of Bottles,

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 13/80

Pack Bottles into Case and Shipment of the Case that can be described from an
Object Event, an Aggregation Event, and an Object Event respectively. We define

an Aggregation Event at packing the bottles because we need to bind the IDs of
the bottles, which are the transacted items, with the ID of every case, which is

the parent object. A similar decomposition and description of Business Processes
from RFID Events is done at the CLCBProc of the Warehouse and the Shopping

centre.

Figure 3: Complete supply chain scenario example.

3.3 Generating Business Logic

Summing up, fixed lists of identifiers with standardized meanings for concepts

like business step and disposition along with user-created identifiers like read
point, business location, business transaction and business transaction type at
the EPCIS layer and ECSpecs at the ALE layer must be defined and combined

with rules applied by the BEG layer so as RFID Events production can be
successfully achieved. All these information elements will be stored and managed

as pieces of Master Data within an appropriate database schema.

To create Event Data, some event fields are required and some are optional.
Table 2 maps these associations.

R = Required
O = Optional

ObjectEvent
Aggregation

Event
Quantity

Event
Transaction

Event

Action R R - R

bizLocation O O O O

bizStep O O O O

bizTransactionList O O O R

childEPCs - R - -

Disposition O O - O

epcClass - - R -

epcList R - - R

eventTime R R R R

parented - R - O

Quantity - - R -

readPoint O O O O

Table 2: Event fields with Event Types mapping (Master Data) [8][35]

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 14/80

So by taking into consideration the Table 2 to generate an ObjectEvent the

information that is required to be produced from the F&C layer is the “epcList”
and the “eventTime”. Optionally the “bizTransactionList” can also be produced to
generate the Event. The rest of the information that is required or is optional is

retrieved from the company‟s Master Data. For that reason we define two
ECReports at any defined ECSpec for generating an Object Event, the one would

contain the tag Classes that belong to the transaction‟s items, which is required,
and the other that would contain the tag classes that would belong to the
transaction ID (e.g. the receiving document‟s tag Class) which is optional.

Continuing for generating an AggregationEvent the “childEPCs”, the “parented”

tag List and the “eventTime”, which is given by default by every ECReport, are
required to be produced from the F&C layer and the “bizTransactionList” is

optional. We define at the ECSpec two required ECReports. The one would
contain the tag classes that belong to the transaction‟s Items, which will be used
for the required “childEPCs” tag List, (e.g. the tagged items inside a carton box).

The second one would contain the tag classes that belong to the Parent Objects,
which will be used for the required “parented” EPC list, (e.g. the tagged carton

box of the previous example). We define optionally one more ECReport that
would contain the tag classes that would belong to the transaction ID (e.g. the
order‟s tagged document that would require the specific Aggregation Event).

Following the same rationale and by taking into consideration the Table 2 we

have defined all the required and optional ECReports [2] that need to be
produced, which are defined at the ECSpec, from the F&C layer. These reports

would then be captured from the BEG Layer and eventually generate the
equivalent EPC RFID Events. This Event/Report binding is summarized in Table 3.

ECReport Names
Object
Event

Aggregation
Event

Quantity
Event

Transaction
Event

bizTransactionIDs O O O R

transactionItems R R R R

parentObjects - R - O

bizTransactionParentIDs - - - R

Table 3: ECReports name and Event Bindingbeing used at the ECSpec Definition

The ECReport groups shown in Table 3 are explained as follows:
 bizTransactionIDs: Include only the Transaction ID EPC Classes set up to

be always reported, by making use of CURRENT at the ECReportSetSpec
Section 8.2.6 of [2].

 transactionItems: Include only the Transaction‟s Items EPC Classes set up
to be reported only once, by making use of ADDITIONS at the
ECReportSetSpec Section 8.2.6 of [2].

 parentObjects: Include only the Transaction‟s Parent Objects EPC Classes
for an Aggregation Event to be reported only once, by making use of

ADDITIONS at the ECReportSetSpec.
 bizTransactionParentIDs: Include only the Transaction‟s Parent Transaction

EPC Classes set up to be always reported, by making use of CURRENT at

the ECReportSetSpec.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 15/80

In the scope of APDL, all the above specifications and management attributes are
augmented with design data borrowed from the XPDL V1.0 specification [27] so

as to describe the processes workflow and to achieve the visualization of the
RFID solution.

3.4 Specification Structure

Let us now briefly review the AspireRFID Process Description Language (APDL)

specification structure [36]. An APDL document is based on XML syntax. As far
as its vocabulary is concerned, the namespaces shown in Table 4 are used.

Element Namespace

alelr:LRSpec urn:epcglobal:alelr:xsd:1

ale:ECSpec urn:epcglobal:ale:xsd:1

epcismd:EPCISMasterDataDocument urn:epcglobal:epcis-masterdata:xsd:1

xpdl:Transitions

http://www.wfmc.org/2002/XPDL1.0
xpdl:TransitionRestrictions

xpdl:ExtendedAttributes

xpdl:Description

Table 4: Namespaces used in APDL

The APDL has a tree structure, as shown in Figure 4 and Figure 5. The root

element which contains the description of a complete supply chain management
scenario is the Open Loop Composite Business Process (<apdl:OLCBProc/>).

Figure 4: APDL’ Schema design (OLCBProc)

“OLCBProc” contains a set of elements called Close Loop Composite Business
Process (<apdl:CLCBProc/>) that are capable of describing a complete close loop

supply chain scenario and the element of Transitions (<xpdl:Transitions/>) which
carries the Close Loop Composite Business processes context-related semantics
description of Transitions between them which is based on the XPDL V1.0

specification [27].

Each of the “CLCBProc” elements, shown in Figure 4, are consisted of a set
Elementary Business Process (<apdl:EBProc/>) elements that describe the

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 16/80

elementary Business Transactions, the CLCBProc‟s Master Data in the form of an
EPCIS Master Data Document (<epcismd:EPCISMasterDataDocument/>) [8] and

the object of Transitions (<xpdl:Transitions/>) which carries the Elementary
Business Processes context-related semantics description of Transitions between

them which is based on the XPDL V1.0 specifications [27]. The EPCIS Master
Data Document element inside the CLCBProc element carries only the

information of the Business Location, the available Business Read Points, the
traded items Dispositions and the company‟s available Business Steps.

Figure 5: APDL’s Schema design (EBProc)

The EBProc elements, shown in Figure 5, are the most important in the APDL

specification since they contain the elementary business process description. For
generating an RFID Event, which in APDL is interwoven with the “CLCBProc”

element, specific configuration information is required from the BEG layer. Most
of this information, as discussed in section 3.3, can be provided in the form of
EPCglobal‟s specification files. These files include:

 The LRSpec, which is used for configuring the physical reader that is going
to be used from the EBProc,

 The ECSpec, which defines the F&C‟s Event Cycle timings and ECReports
that that will be used (see Table 3), and

 The Business Transaction description (see Table 1) which is stored at the
company‟s Master Data as “BusinessTransactionID” Vocabulary

(urn:epcglobal:epcis:vtype:BusinessTransaction), at the EPCIS repository,
and APDL is using an EPCIS Master Data Document to store them.

Finally all the above specifications are enhanced by configuration data, which are

required from the AspireRFID‟s PE (programmable Engine). And design data,
which are required by the AspireRFID‟s BPWME.

So the EBProc element more specifically contains:

 A set of DataFields (<apdl:DataFields/>), that include the required
o ECSpec (<ale:ECSpec/>),
o LRSpec (<alelr:LRSpec/>) and

o Master Data (<epcismd:EPCISMasterDataDocument/>) for
describing a specific elementary business process transaction.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 17/80

 A TransitionRestrictions [27] (<xpdl:TransitionRestrictions/>) element,
containing a set of TransitionRestriction [27]

(<xpdl:TransitionRestriction/>) elements which are used as design data.
 An ExtendedAttributes (<xpdl:ExtendedAttributes/>) element, containing

a set of ExtendedAttribute (<xpdl:ExtendedAttribute/>) elements. This
element is used in two ways. Firstly in order to store basic graphical

representation data (x/y coordinates). In particular, the following key-
value pairs are stored: XOffset, YOffset, CellHeight and CellWidth for the
EBProc Object graphical representation. Secondly in order to store the

basic configuration data. In particular, this set includes the following: (a)
the EC Spec Subscription URI, (b) the ALE Client endpoint, (c) the ALE

Logical Reader Client endpoint, (d) the EPCIS Capture interface endpoint
and (e) the EPCIS query interface endpoint.

 And finally a description (<xpdl:Description/>) element, where optionally

a simple description of the process can be stored.

More details about APDL can be found at Deliverable D4.4b [24] and the
complete APDL schema definition can be found in Appendix II.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 18/80

Section 4 Methodology

The development of PE was structured following a combination of two
methodologies.

 The one was the design science methodology [28], which is characterized
by its problem solving nature and it is used when there is a problem that
is observed in a specific environment and there is no apparent solution

design for solving it [28]. Design science is differentiated from theoretical
research in how the concept of truth is valued. In, for example, positivist

research the researcher set out to unearth an objective truth using large
amount of data that is processed in a systematic way. On the other hand,

in pragmatic research, which design science is a descendant of, truth is
measured by what works [29], [30].

 The second methodology that was used is requirement engineering. The

major activities in requirements engineering include elicitation, modelling
and analysis, communication, agreement, evolution and Integration [34].

Therefore, the requirements of the PE design were steered by:

 The problem of easily applying/deploying an RFID solution to existing

business processes. Some of the well-understood [29] business processes
that was used to model the problem include the Receiving, Pick & Pack,

Shipping, Palletization/De-palletization, Store to/ Remove from a shelf and
moving within logical warehouses [16].

 The feedback collected from the developers and Users of the AspireRFID

Open Source community identifying the complexity of deploying and
configuring an RFID middleware.

 The feedback that was collected from SME‟s and the requirements that
were identified by using surveys.

 The experience gained by evaluating Open Source EPC compliant RFID

middleware (e.g. Fosstrak [1], Rifidi[33]) and commercial ones (e.g. BEA
WebLogic RFID Enterprise Server[35]) as far as the ease of development

and deployment of RFID oriented Business Processes is concerned.
 The requirements that were collected from the design and development

process of the APDL (AspireRFID Process Description Language) [36] and

the BPWME (Business Process Workflow Management Editor), where PE
plays the role of a “linchpin” between them and the rest of the

middleware.
 And finally the feedback acquired and analyzed from AspireRFID

middleware pilot deployments (e.g. [32]) and the mapping of the trial

processes into the APDL language.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 19/80

Section 5 Role within the AspireRFID Architecture

The AspireRFID Programmable Engine (PE) module depicted in Figure 6 below
resides between the AspireRFID IDE environment and the rest of the AspireRFID

architecture. More specifically it is used as intermediary for the AspireRFID
Business Process Workflow Management Editor (BPWME) plug-in to “register”,

“unregister”, “update”, “start” and “stop” a running instance of the AspireRFID
middleware from the produced APDL xml file. It is also able to “get” from the
ASPIRE middleware an already registered Business Process configuration and

send it back to the BPWME. The Programmable Engine (PE) provides a
standalone client able to register, unregister, get, start, stop and update from

the AspireRFID middleware APDL xml files.

Figure 6: Programmable Engine role in the AspireRFID Architecture

The PE is fully based on Service Oriented Architecture (SOA) and reveals three
interfaces, the OLCBProcControl API, the CLCBProcControl API and the EBProcControl

API, that use the SOAP protocol for the exchanging of messages. These are fully
detailed in Section 6 and the SOAP interfaces can be found in APENDIX III.

For the configuration of the three basic AspireRFID modules, Filtering and
Collection (F&C), Business Event Generator (BEG) and Information Service

repository (EPCIS); PE uses their specific and already defined SOAP interfaces. In
the next paragraphs we are going to briefly describe such API‟s and the nature of

PE‟s communication with these “underlying” modules. Furthermore, in the

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 20/80

following Sections we are going to describe the specific PE‟s Interface and their
implementation within ASPIRE.

At this point it worth‟s to mention that AspireRFID architecture uses Fosstrak‟s

[1] EPCIS and F&C (ALE) implementations that ASPIRE has enhanced and
tailored to meet its needs. Most of the enhancements conducted to the EPCIS

module have been contributed to the Fosstrak project.

The EPCIS module can be downloaded from the Fosstrak site

(http://www.fosstrak.org/epcis/download.html).

5.1 Filtering and Collection

The main role of the filtering and collection module (F&C) within the ASPIRE
architecture is to reduce the volume of captured RFID data and transform raw

tag reads into streams of events suitable for processing by the application logic
of Business Event Generator module. The main specifications ruling the F&C
module functionality are the ECSpecs and the LRSpecs. For enabling the

Programmable engine to configure the Filtering and collection module the use of
the ALE and ALE-LR APIs (see Figure 1 above) will be required.

5.1.1 ALE Client

The Filtering & Collection Interface (ALE), see Figure 6 above, provides a

standard interface to the Filtering & Collection role that applies to a large
collection of use cases in which RFID Tags are inventoried (i.e., where the EPCs
carried on the tags are read).

The purpose of the F&C Interface is to provide:

 Means for one or more client applications to request EPC data from one or
more Tag sources.

 Means for one or more client applications to request that a set of
operations be carried out on Tags accessible to one or more Tag sources.
Such operations including writing, locking, and killing.

 Declarative means for client applications to specify what processing to
perform on EPC data, including filtering, aggregation, grouping, counting,

and differential analysis.
 Means for client applications to request data or operations on demand

(synchronous response) or as a standing request (asynchronous

response).
 Means for multiple client applications to share data from the same reader

or readers, or to share readers‟ access to Tags for carrying out other
operations, without prior coordination between the applications.

 A standardized representation for client requests for EPC data and

operations, and a standardized representation for reporting filtered,
collected EPC data and the results of completed operations.

 And finally to insulate client applications from knowing how many
readers/antennas, and what makes and models of readers are deployed to
constitute a single, logical Tag source.

http://www.fosstrak.org/epcis/download.html

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 21/80

Through a client that implements the ALE API [2] and with the use of SOAP

protocol the Programmable Engine may define and manage event cycle
specifications (ECSpecs). The methods that ALE Interface exposes and are used

from the Programmable Engine to configure the F&C server are:
 The “define(specName : String, spec : ECSpec) : void” which Creates a

new ECSpec having the name specName, according to spec.
 The “getECSpecNames() : List<String>” which Returns an unordered list

of the names of all ECSpecs that are visible to the caller.

 The “getECSpec(specName : String) : ECSpec” which Returns the ECSpec
that was provided when the ECSpec named specName was created by the

define method.
 The “undefine(specName : String) : void” which Removes the ECSpec

named specName that was previously created by the define method.

 The “subscribe(specName : String, notificationURI : String) : void” which
Adds a subscriber having the specified notificationURI to the set of current

subscribers of the ECSpec named specName.
 And the “unsubscribe(specName : String, notificationURI : String) : void”

which Removes a subscriber having the specified notificationURI from the

set of current subscribers of the ECSpec named specName.

5.1.2 ALE-LR Client

The Logical Reader API [2] provides a standardized way for an ALE client to

define a new logical reader name as an alias for one or more other logical reader
names. The API also provides a means for a client to get a list of all of the logical

reader names that are available, and to learn certain information about each
logical reader. Through a client that implements the ALE-LR interface and with
the use of SOAP protocol the Programmable Engine may define Logical Reader

specifications (LRSpecs). The methods that ALE-LR Interface exposes and are
used from the Programmable Engine to configure the F&C server are:

 The “getLogicalReaderNames() : List<String>” which Returns an unordered list

of the names of all logical readers that are visible to the caller. This list SHALL
include both composite readers and base readers.

 The “getLRSpec(name : String) : LRSpec” which returns an LRSpec that
describes the logical reader named name.

 The “define(name : String, spec : LRSpec) : void” which Creates a new
logical reader named name according to spec.

 The “undefine(name : String) : void” which removes the logical reader
named name.

 And the “update(name : String, spec : LRSpec) : void” which Changes the

definition of the logical reader named name to match the specification in
the spec parameter.

5.2 Business Event Generator

The role of the BEG is to automate the mapping between reports stemming from

F&C and IS events. The Business event generation (BEG) module associates

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 22/80

business-context information (Master Data) with event data. The data is stored
in the Information Services module repository as Event Data and are mapping

associated events with a company‟s master data.

5.2.1 Functionality and relation with the Programmable engine

In order for BEG to create aforementioned Event Data it needs the EPCIS‟s
offered services URLs (Capture/Query) and most importantly the appropriate
information from the EPCIS repository (Master Data). These necessary data for

the proper population of the EPCIS events are retrieved from the EPCIS
repository, and more specifically the data defined at the BusinessTransaction‟s

Attributes vocabulary [23], by using EPCIS‟s query interface. So for the
Programmable Engine to be able to perform the required management over the
BEG as shown in Figure 6 above it should be able to retrieve the EPCIS‟s running

instance Query End-Point from a given APDL‟s EBProc and use it to get the
VocabularyElementType [8] for a specific Elementary Business Processes

(EBProc) ID. Furthermore the PE should be able to retrieve the EPCIS Client
Capture End-Point from a given APDL‟s EBProc so as to complete all the required

information to be able to use the BEG client service and more specifically the
“startBegForEvent” as shown in Table 5 below.

Service Name Input Output Info
getEpcListForEvent String eventID EventStatus* Returns what is

currently happening
for a specific
transaction

stopBegForEven String eventID boolean Stop serving a

specific Event
(described at the
Master Data)

getStartedEvents --- List<String> Get all the Event IDs
that are currently

been served from the
BEG

startBegForEvent VocabularyElementType[8]
VocElem, String
repositoryCaptureURL,
String begListeningPort

boolean Start a specific Event
that is available at
the EPCIS‟s Master
Data

getEventList String repositoryQueryURL List
<VocabularyElementT
ype>

Get all the Available
Events (ready to be
served) from the
EPCIS‟s repository

Master Data

Table 5: BEG server Web Service Interface

* EventStatus is consisted of the following objects:
 A String which denotes the Transactions ID named “transactionID”

 And a list of Strings (ArrayList<String>) which stores all the read tags that
are connected with the abovementioned Transaction named “epcList”

So the BEG component API, as shown in Table 5 above provides five methods for

interaction with the BEG client which are all communicating with the BEG client
by exchanging SOAP messages.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 23/80

 The first method is the getEpcListForEvent (EventStatus
getEpcListForEvent(String eventID)) which is used for returning to the BEG

client an EventStatus object which contains the real time list of EPC ids
and the transaction ID of a chosen Event (String eventID) from the list of

events that the BEG component is already serving. So with the help of this
method one can observe at real time the incoming IDs as they are

reported to the BEG by the F&C component and are related with a specific
transaction Event.

 The second method is the stopBegForEvent (boolean

stopBegForEvent(String eventID)) which is used by the BEG client to stop
serving a predefined Event by sending to it its specific EventID.

 The third method is the getStartedEvents (List<String>
getStartedEvents()) which returns a list of Event IDs that the BEG
component is serving.

 The fourth method is the startBegForEvent (boolean
startBegForEvent(VocabularyElementType vocabularyElementType, String

repositoryCaptureURL, String begListeningPort)) which is used to set up
the BEG component for start serving a specific Event. More specifically this
method takes the already pre described Elementary Business Transaction

Event described at the Information Sharing repository‟s Master Data and
uses it for configuring the Business Event Generator to create Business

Events from the ECReports received from the port given as variable to the
startBegForEvent method. If the method is successful it will return true
otherwise it will return false.

 Finally, the fifth method is the getEventList
(List<VocabularyElementType> getEventList(String repositoryQueryURL))

which is used for returning a list of all the available defined Events from a
Company‟s EPCIS Master Data repository.

5.3 EPC Information Services

The EPCIS is a component responsible for receiving application-agnostic RFID

data from the filtering and collection layer, translating that data into business
events, and optionally storing them into an EPCIS repository.

The EPCIS provides standard interfaces (see Figure 1 above) that allow EPC-
related data to be captured and queried through a predefined set of operations.

The ASPIRE EPC EPCIS must provide the two corresponding interfaces between
the filtering & collection middleware and upstream layers (i.e. business event

generation modules or host applications), illustrated in the upper layers of on
figure. In particular: the Capture API and the Query API defined in the EPC
Global‟ EPCIS specification [8]

5.3.1 Capture Client

Because the Programmable Engine (PE) is not related with the Event Data
generation, the Capture Client uses only the Master Data capture Interface. The

specific Application Programming Interface (API) was specified and implemented
by ASPIRE which has been contributed to the Fosstrak [1] EPCIS project. This

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 24/80

Interface is used to Store the required Master Data to the EPCIS‟s vocabularies
that are eventually used from the BEG engine for the Event Data “production”.

This new interface supports eleven control commands which are briefly described

in the followinglist:
1. alterVocElem (String vocabularyType, String oldVocabularyElementURI,

String newVocabularyElementURI)
 Which is used to alter a vocabulary's Element URI.

2. insertVocElem (String vocabularyType, String vocabularyElementURI)

 Which is used to insert a vocabulary's Element.
3. massInsertVocElem (String vocabularyType, ArrayList<String>

vocabularyElementURIs)
 Which is used to insert many vocabulary's Elements.

4. deleteVocElem (String vocabularyType, String vocabularyElementURI)

 Which is used to delete a vocabulary's Element (When using single
delete only the element with its attributes will be deleted).

5. massDeleteVocElem (String vocabularyType, ArrayList<String>
vocabularyElementURIs)
 Which is used to delete many vocabulary's Elements (When using mass

delete only the listed elements with their attributes will be deleted).
6. deleteWithDescendantsVocElem (String vocabularyType, String

vocabularyElementURI)
 Which is used to delete a vocabulary's Element with its direct or

indirect descendants (The element with its attributes and with all of its

children elements and its children's attributes will be deleted).
7. massDeleteWithDescendantsVocElem (String vocabularyType,

ArrayList<String> vocabularyElementURIs)
 Which is used to delete many vocabulary's with their Elements and with

their direct or indirect descendants. The elements with its attributes

and with all of its children elements and its children's attributes will be
deleted.

8. insertOrAlterVocElemAttr (String vocabularyType, String
vocabularyElementURI, String vocabularyAttributeName, String
vocabularyAttributeValue)

 Which is used to insert or Update a vocabulary Element‟s Attribute. If
the Vocabulary is not inserted yet it will be inserted. The

vocabularyElementURI, vocabularyAttributeName pair should be unique
so if it already exists it will be changed to the vocabularyAttribute
entered or simply rewrite it.

9. massInsertOrAlterVocElemAttr (String vocabularyType, String
vocabularyElementURI, HashMap<String, String> vocabularyAttributes)

 Which is used to mass Insert or Update a vocabulary Element‟s
Attributes. If the Vocabulary is not inserted yet it will be inserted. The

vocabularyElementURI, vocabularyAttributeName pair (the
vocabularyAttributeName is the key of the vocabularyAttributes
HashMap) should be unique so if it already exists it will be changed to

the vocabularyAttributeValue (which is the value of the
vocabularyAttributes HashMap) entered or simply rewrite it.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 25/80

10.deleteVocElemAttr (String vocabularyType, String
vocabularyElementURI, String vocabularyAttributeName)

 Which is used to delete a vocabulary Element‟s Attribute.
11.massDeleteVocElemAttr (String vocabularyType, String

vocabularyElementURI, ArrayList<String> vocabularyAttributeNames)
 Which is used to delete many vocabulary Element‟s Attributes.

5.3.2 Query Client

At runtime the Programmable Engine requires information from the EPCIS‟s
Stored Master Data so as to Correctly Update/Save new ones through the

Capture client. To achieve that the PE is using the EPCIS‟s
SimpleMasterDataQuery Interface [8]. EPCIS provides the
SimpleMasterDataQuery Interface which provides predefined queries that

Programmable Engine may invoke using the poll methods of the EPCIS Query
Control Interface.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 26/80

Section 6 PE Interfaces

This section defines normatively the PE‟s API. The External Interface is defined in
the following sections and the implementation is described in Section 7. The

programmable engine exposes three Interfaces. They are calcified in three
different levels of control which reflects the three different levels of Business
Processes that the APDL language provides which are the OLCBProc (Open Loop

Composite Business Process), the CLCBProc (Close Loop Composite Business
Process) and the EBProc (Elementary Business Process). So these PE Interfaces

are named respectively:
 OLCBProcControl API

 CLCBProcControl API
 and EBProcControl API

The reason for creating these three different APIs is to give the agility to the PE
to be used in complex as long as simple business processes depending on the

given solution needs. Each of these APIs offers six configuration/control methods
which are the register, unregister, update, start, stop and get(OLCBProc,
CLCBProc, EBProc) and are described in the following three subsections.

6.1 OLCBProcControl API

The OLCBProcControl API is used to control a complete open loop composite

business RFID solution. The OLCBProcControl API is consisted from 6 functions
that are shown in Table 6 below.

register(openLoopCBProc : OLCBProc) : HashMap<String, String>

unregister(openLoopCBProc : OLCBProc) : HashMap<String, String>

update(openLoopCBProc : OLCBProc) : HashMap<String, String>

start(openLoopCBProc : OLCBProc) : HashMap<String, String>

stop(openLoopCBProc : OLCBProc) : HashMap<String, String>

getOLCBProc (openLoopCBProcID : String, endpoints : HashMap<String,

String>) : OLCBProc

Table 6: OLCBProcControl API

In Java the Table 6 API shown above, with the exceptions thrown from each

method, would be:
 HashMap<String, String> register(OLCBProc openLoopCBProc) throws

OLCBProcValidationException, NotCompletedExecutionException
 HashMap<String, String> unregister(OLCBProc openLoopCBProc)

 throws NoSuchOLCBProcIdException
 HashMap<String, String> update(OLCBProc openLoopCBProc) throws

OLCBProcValidationException, NotCompletedExecutionException

 HashMap<String, String> start(OLCBProc openLoopCBProc) throws
NoSuchOLCBProcIdException

 HashMap<String, String> stop(OLCBProc openLoopCBProc) throws
NoSuchOLCBProcIdException

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 27/80

 OLCBProc getOLCBProc (String openLoopCBProcID, HashMap<String,
String> endpoints) throws NoSuchOLCBProcIdException

So a PE implementation SHALL implement the methods of the OLCBProcControl

API as specified in Table 7 below.

Method Argument/ Result Type Description

register

openLoopCBProc OLCBProc This method initializes and starts the
AspireRFID middleware to serve the
described Open Loop Business
Processes within the given APDL
XML document. The method returns
an unordered name/value pair list
that denotes if the different
middleware configuration steps were
successful or not.

[result]
HashMap

<String, String>

unregister

openLoopCBProc OLCBProc This method removes all the
configurations for a specific Open
Loop Composite Business process
from the middleware. The method
returns an unordered name/value
pair list that denotes if the different
middleware configurations removal
steps were successful or not.

[result]
HashMap

<String, String>

update

openLoopCBProc OLCBProc This method updates and restarts the
AspireRFID middleware, for a
specific and already registered
OLCBProc, from the given APDL
XML document. The method returns
an unordered name/value pair list
that denotes if the different
middleware update steps were
successful or not.

[result]
HashMap

<String, String>

start

openLoopCBProc OLCBProc This method starts an already
registered and stopped OLCBProc by
giving as impute the OLCBProc. The
method returns an unordered
name/value pair list that denotes if
the different middleware start steps
were successful or not.

[result]
HashMap

<String, String>

stop

openLoopCBProc OLCBProc This method stops an already
registered (started) OLCBProc by
giving as impute the OLCBProc. The
method returns an unordered
name/value pair list that denotes if
the different middleware start steps
were successful or not.

[result]
HashMap

<String, String>

getOLCBProc

openLoopCBProcID String This method returns, an already
defined, OLCBProc Object by giving
as impute the Objects ID and an
unordered name/value pair list of the
endpoints of the targeted
servers/modules running instances.

endPoints
HashMap

<String, String>

[result] OLCBProc

Table 7: OLCBProcControl Interface Methods

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 28/80

6.1.1 Error Conditions

Methods of the OLCBProcControl API signal error conditions to the client by
means of exceptions. The following exceptions are defined (shown in Table 8

below).

Exception Name Meaning

OLCBProcValidationException The specified OLCBProc is invalid

NotCompletedExecutionException The method was not executed/completed successfully

NoSuchOLCBProcIdException
The given OLCBProc ID does not exist (there is no
registered OLCBProc with the given ID).

Table 8: Exceptions in the OLCBProcControl Interface

The exceptions that may be raised by the OLCBProcControl API method are

indicated in Table 9 below.

Method Exceptions

register
OLCBProcValidationException,
NotCompletedExecutionException

unregister NoSuchOLCBProcIdException

update
OLCBProcValidationException,
NotCompletedExecutionException

start NoSuchOLCBProcIdException

stop NoSuchOLCBProcIdException

getOLCBProc NoSuchOLCBProcIdException

Table 9: Exceptions Raised by each OLCBProcControl Interface Method

6.2 CLCBProcControl API

The CLCBProcControl API is used to control a complete close loop composite
business RFID solution. The CLCBProcControl API is consisted from 6 functions

that are shown in Table 10 below.

register(closeLoopCBProc : CLCBProc) : HashMap<String, String>

unregister(closeLoopCBProc : CLCBProc) : HashMap<String, String>

update(closeLoopCBProc : CLCBProc) : HashMap<String, String>

start(closeLoopCBProc : CLCBProc) : HashMap<String, String>

stop(closeLoopCBProc : CLCBProc) : HashMap<String, String>

getCLCBProc (closeLoopCBProcID : String, endpoints : HashMap<String,

String>) : CLCBProc

Table 10: OLCBProcControl API

In Java the Table 10 API shown above, with the exceptions thrown from each
method, would be:

 HashMap<String, String> register (CLCBProc closeLoopCBProc) throws
CLCBProcValidationException, NotCompletedExecutionException

 HashMap<String, String> unregister(CLCBProc closeLoopCBProc) throws
NoSuchCLCBProcIdException

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 29/80

 HashMap<String, String> update(CLCBProc closeLoopCBProc) throws
CLCBProcValidationException, NotCompletedExecutionException

 HashMap<String, String> start(CLCBProc closeLoopCBProc) throws
NoSuchCLCBProcIdException

 HashMap<String, String> stop(CLCBProc closeLoopCBProc) throws
NoSuchCLCBProcIdException

 CLCBProc getCLCBProc(String closeLoopCBProcID, HashMap<String,
String> endpoints) throws NoSuchCLCBProcIdException

So a PE implementation SHALL implement the methods of the CLCBProcControl
API as specified in Table 11 below.

Method Argument/ Result Type Description

register

closeLoopCBProc CLCBProc This method initializes and starts the
AspireRFID middleware to serve the
described Close Loop Business
Processes within the given APDL
XML document. The method returns
an unordered name/value pair list
that denotes if the different
middleware configuration steps were
successful or not.

[result]
HashMap

<String, String>

unregister

closeLoopCBProc CLCBProc This method removes all the
configurations for a specific Close
Loop Composite Business process
from the middleware. The method
returns an unordered name/value
pair list that denotes if the different
middleware configurations removal
steps were successful or not.

[result]
HashMap

<String, String>

update

closeLoopCBProc CLCBProc This method updates and restarts the
AspireRFID middleware, for a
specific and already registered
CLCBProc, from the given APDL
XML document. The method returns
an unordered name/value pair list
that denotes if the different
middleware update steps were
successful or not.

[result]
HashMap

<String, String>

start

closeLoopCBProc CLCBProc This method starts an already
registered and stopped CLCBProc by
giving as impute the CLCBProc. The
method returns an unordered
name/value pair list that denotes if
the different middleware start steps
were successful or not.

[result]
HashMap

<String, String>

stop

closeLoopCBProc CLCBProc This method stops an already
registered (started) CLCBProc by
giving as impute the CLCBProc. The
method returns an unordered
name/value pair list that denotes if
the different middleware start steps
were successful or not.

[result]
HashMap

<String, String>

getCLCBProc
openLoopCBProcID String This method returns, an already

defined, CLCBProc Object by giving endPoints HashMap

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 30/80

<String, String> as impute the Objects ID and an
unordered name/value pair list of the
endpoints of the targeted
servers/modules running instances.

[result] CLCBProc

Table 11: CLCBProcControl Interface Methods

6.2.1 Error Conditions

Methods of the CLCBProcControl API signal error conditions to the client by

means of exceptions. The following exceptions are defined (shown in Table 12
below).

Exception Name Meaning

CLCBProcValidationException The specified CLCBProc is invalid

NotCompletedExecutionException The method was not executed/completed successfully

NoSuchCLCBProcIdException
The given CLCBProc ID does not exist (there is no
registered CLCBProc with the given ID).

Table 12: Exceptions in the CLCBProcControl Interface

The exceptions that may be raised by the CLCBProcControl API method are
indicated in Table 13 below.

Method Exceptions

register
CLCBProcValidationException,
NotCompletedExecutionException

unregister NoSuchCLCBProcIdException

update
CLCBProcValidationException,
NotCompletedExecutionException

start NoSuchCLCBProcIdException

stop NoSuchCLCBProcIdException

getCLCBProc NoSuchCLCBProcIdException

Table 13: Exceptions Raised by each CLCBProcControl Interface Method

6.3 EBProcControl API

The EBProcControl API is used to control a complete open loop composite
business RFID solution. The EBProcControl API is consisted from 6 functions that

are shown in Table 14 below.

register(elementaryBProc : EBProc) : HashMap<String, String>

unregister(elementaryBProc : EBProc) : HashMap<String, String>

update(elementaryBProc : EBProc) : HashMap<String, String>

start(elementaryBProc : EBProc) : HashMap<String, String>

stop(elementaryBProc : EBProc) : HashMap<String, String>

getEBProc (elementaryBProcID : String, endpoints : HashMap<String,

String>) : EBProc

Table 14: EBProcControl API

In Java the Table 14 API shown above, with the exceptions thrown from each
method, would be:

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 31/80

 HashMap<String, String> register(EBProc elementaryBProc) throws
EBProcValidationException, NotCompletedExecutionException

 HashMap<String, String> unregister(EBProc elementaryBProc) throws
NoSuchEBProcIdException

 HashMap<String, String> update(EBProc elementaryBProc) throws
EBProcValidationException, NotCompletedExecutionException

 HashMap<String, String> start(EBProc elementaryBProc) throws
NoSuchEBProcIdException

 HashMap<String, String> stop(EBProc elementaryBProc) throws

NoSuchEBProcIdException
 EBProc getEBProc(String elementaryBProcID, HashMap<String, String>

endpoints) throws NoSuchEBProcIdException

So a PE implementation SHALL implement the methods of the EBProcControl API

as specified in Table 15 below.

Method Argument/ Result Type Description

register

elementaryBProc EBProc This method initializes and starts the
AspireRFID middleware to serve the
described Open Loop Business
Processes within the given APDL
XML document. The method returns
an unordered name/value pair list
that denotes if the different
middleware configuration steps were
successful or not.

[result]
HashMap

<String, String>

unregister

elementaryBProc EBProc This method removes all the
configurations for a specific Open
Loop Composite Business process
from the middleware. The method
returns an unordered name/value
pair list that denotes if the different
middleware configurations removal
steps were successful or not.

[result]
HashMap

<String, String>

update

elementaryBProc EBProc This method updates and restarts the
AspireRFID middleware, for a
specific and already registered
EBProc, from the given APDL XML
document. The method returns an
unordered name/value pair list that
denotes if the different middleware
update steps were successful or not.

[result]
HashMap

<String, String>

start

elementaryBProc EBProc This method starts an already
registered and stopped EBProc by
giving as impute the EBProc. The
method returns an unordered
name/value pair list that denotes if
the different middleware start steps
were successful or not.

[result]
HashMap

<String, String>

stop

elementaryBProc EBProc This method stops an already
registered (started) EBProc by giving
as impute the EBProc. The method
returns an unordered name/value
pair list that denotes if the different

[result]
HashMap

<String, String>

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 32/80

middleware start steps were
successful or not.

getEBProc

elementaryBProcID String This method returns, an already
defined, EBProc Object by giving as
impute the Objects ID and an
unordered name/value pair list of the
endpoints of the targeted
servers/modules running instances.

endPoints
HashMap

<String, String>

[result] EBProc

Table 15: EBProcControl Interface Methods

6.3.1 Error Conditions

Methods of the EBProcControl API signal error conditions to the client by means
of exceptions. The following exceptions are defined (shown in Table 16 below).

Exception Name Meaning

EBProcValidationException The specified EBProc is invalid

NotCompletedExecutionException The method was not executed/completed successfully

NoSuchEBProcIdException
The given EBProc ID does not exist (there is no
registered EBProc with the given ID).

Table 16: Exceptions in the EBProcControl Interface

The exceptions that may be raised by the EBProcControl API method are
indicated in Table 17 below.

Method Exceptions

register
EBProcValidationException,
NotCompletedExecutionException

unregister NoSuchEBProcIdException

update
EBProcValidationException,
NotCompletedExecutionException

start NoSuchEBProcIdException

stop NoSuchEBProcIdException

getEBProc NoSuchEBProcIdException

Table 17: Exceptions Raised by each EBProcControl Interface Method

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 33/80

Section 7 PE API Implementation

In this section an overview of the PE API implementation design will be provided.
The PE‟s implementation requires the use of the various existing API‟s described

in Section 5 such as:
 ALE Reading API,
 ALE Logical Reader API,

 BEG API
 EPCIS Master Data Query and Capture API (SimpleMasterDataQuery and

SimpleMasterDataCapture)

PE‟s most generic API implementation, the OLCBProcControl API, is described.
The spessific API is superset comparing to the other two as far as the
implementation is concerned so it covers the implementation of the

CLCBProcControl and the EBProcControl APIs as well.

OLCBProcControl, as mentioned above, provides six control methods. These
methods are:

 register

 unregister
 update

 start
 stop
 getOLCBProc

7.1 register

This method (“register(openLoopCBProc : OLCBProc) : HashMap<String,
String>”) initializes and starts the AspireRFID middleware to serve the described
Open Loop Business Processes within the given APDL XML document. As soon as

the method is executed it returns an unordered name/value pair list, as a
HashMap Object, that denotes if the different middleware configuration steps

were successful or not. Figure 7 below depicts the various steps PE
implementation follows to “register” an APDL xml document into a running

instance of AspireRFID middleware.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 34/80

Figure 7: Programmable Engine’s Register Steps

Firstly the PE Client should retrieve from the APDL xml file (Step 1) the OLCBProc

XML Element and map it to an OLCBProc Java Object with the help of JAXB (Java
Architecture for XML Binding). The second step is to deliver to the PE server

interface an APDL XML document encapsulated inside a SOAP message. At
Appendix III the PE‟s register SOAP Interface can be found. For the Web Services

Implementation Apache CXF framework was used and specifically with use of
Servlet Transport implementation [26].

7.1.1 APDL Analysis and System Configuration

When an OLCBProc Object arrives to the PE, its CLCBProcs and its EBProcs,
which reside inside every CLCBProc, are analyzed respectively. For each EBProc
and by considering its parent‟s Objects (Attributes and IDs), the PE builds the

required specification files in order to configure a running instance of the
middleware. Another objective of this analysis is to create an Object

“ProcessedEBProc”, described in Table 18 below, which holds all the information
required for configuring the AspireRFID middleware for each Elementary Business

Process.

Attribute Name Type Description
id String The ID of the

EBProc
name String The name of the

EBProc
ecSpec ECSpec The extracted

ECSpec file

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 35/80

lrSpecs Hashtable<String,LRSpec> A Hashtable with

key value the
Logical Reader
name and its

LRSpec as value.
epcisMasterDataDocument EPCISMasterDataDocumentType All the Master Data

that are required to
be stored for a

specific EBProc at
the EPCIS
repository.

ecSpecSubscriptionURI String The URI where the
Defined ECSpec

should be
subscribed. Actually

this URI is where
BEG is accepting
reports for this

EBProc.
definedECSpecName String The name of the

ECSpec that will be
Defined

aleClientEndPoint String The URI where the
ALE Reading API is

revealed
aleLrClientEndPoint String The URI where the

ALE Logical Reader
API is revealed

epcisClientCaptureEndPoint String The URI where the
EPCIS Capture
Interface is

revealed.
epcisClientQueryEndPoint String The URI where the

EPCIS Query
Interface is

revealed.
Table 18: ProcessedEBProc Object

7.1.1.1 ALE-LR Setup

For each EBProc, the APDL language offers the possibility to describe many
Logical Reader specifications (LRSpecs) to be used by the ECSpec. These are

saved at a Hashtable Java Object, when the APDL document passed as
parameter is analyzed for every EBProc it describes.

The third Step as shown in Figure 7 above is to get all the Already-Defined
LRSpec names from the Running Instance of the targeted F&C server, so as at

the next step to “Define”, by using the ALELR API [2], only Logical Readers that

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 36/80

have not been priory defined yet and “Update” Logical Readers that have been
(Step 4).

For the ALE-LR Setup three methods from the ALELR interface [2] are used:

 The “getLogicalReaderNames() : List<String>” which Returns an unordered list
of the names of all logical readers that are visible to the caller. This list SHALL
include both composite readers and base readers.

 The “define(name : String, spec : LRSpec) : void” which Creates a new
logical reader named name according to spec.

 And the “update(name : String, spec : LRSpec) : void” which Changes the

definition of the logical reader named name to match the specification in
the spec parameter.

7.1.1.2 ALE Setup

The ECSpec required for the middleware configuration are directly taken from
each EBProc “DataField”. The only change tha is done involves concatenating at

Every ECReport name the EBProcs IDusing the “@” symbol. This ID will later be
used by the BEG to distinguish the received ECReports from the various EBProcs
configurations.

According to the same logic in Step 5 (Figure 7 above), the PE implementation

gets all the defined ECSpec names, previously defined to the running instance so
as to determine previously inexistent ECSpecs and “Undefine/Define” the existing

ones and so to update its own tables accordingly (Step 6). After making BEG and
id ready to receive ECReports, the next Step (Step 10) is to Subscribe the
determined ECSpec, from the previous step (Step6), to the BEG Running

instance (“ecSpecSubscriptionURI” Table 18 above).

For the ALE Setup five methods from the ALE interface [2] are used:
 The “define(specName : String, spec : ECSpec) : void” which Creates a

new ECSpec having the name specName, according to spec.
 The “getECSpecNames() : List<String>” which Returns an unordered list

of the names of all ECSpecs that are visible to the caller.

 The “undefine(specName : String) : void” which Removes the ECSpec
named specName that was previously created by the define method.

 The “subscribe(specName : String, notificationURI : String) : void” which
Adds a subscriber having the specified notificationURI to the set of current
subscribers of the ECSpec named specName.

 And the “unsubscribe(specName : String, notificationURI : String) : void”
which Removes a subscriber having the specified notificationURI from the

set of current subscribers of the ECSpec named specName.

7.1.1.3 EPC Information Service Setup

The next point that ASPIRE‟s PE takes care of is the configuration of the Master

Data. For Each EBProc the Disposition, Transaction Type, Read Point and
Business Step are “Saved” to the EPCIS Repository, if they do not already exist,

from the provided “EPCISMasterDataDocument” [8] with the help of the EPCIS

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 37/80

Capture Interface. The EPCIS Capture End Point is provided by the EBProcs
“ExtededAttributes” [24] with name “EpcisClientCaptureEndPoint”. For the

Business Transaction vocabulary type the OLCBProc Structure is considered and
every given EBProc is saved as the Child of the CLCBProc it belongs to which in

its turn is saved also as a child of the OLCBProc it belongs to. For the last task
the various different Elements ID‟s are used to build the aforementioned

structure. Furthermore every parent element (OLCBProc and CLCBProc) host‟s a
Master Data document with information which is related with the children
EBProc. So the OLCBProc host generic data (BusinessStep, Disposition,

BusinessTransactionType) that apply to the whole supply chain whereas the
CLCBProc host user data that are relevant for a specific business location

(BusinessLocation and ReadPoint). These data are retrieved and saved to the
EPCIS repository by taking special consideration at the TransactionID master
Data vocabulary to keep their structure (OLCBProcID>CLCBProcID>EBProcID).

This concludes the Step 7 of the PE‟s configuration process.

7.1.1.4 BEG Setup

Continuing, the Programmable Engine retrieves the EPCIS Query End-Point

provided from the EBProcs “ExtededAttributes” [24] with name
“EpcisClientQueryEndPoint” and uses it to get the VocabularyElementType [8]

(Step 8) for the Elementary Business Processes (EBProc) whose ID is set to be
the same as the BusinessTransaction‟s ID that BEG is going to be configured to
serve. After that, the PE retrieves the EPCIS Client Capture End-Point from the

EBProcs “ExtededAttributes” [24] with name “ECSpecSubscriptionURI” and uses
the “startBegForEvent” BEG client Service, (which requires as input the

“VocabularyElementType”, the “repositoryCaptureURL” and the
“begListeningPort” as shown in Figure 7 above) the attributes of which have

already been retrieved from the previous steps, to configure the BEG‟s
functionality for the given EBProc (Step 9).

7.1.2 Final Step and Result

After Subscribing the ECSpec to the BEG running instance the final step (Step

11) is to send back to the Programmable Engine‟s client the “register” execution
status. The execution status is a name/value pair stored at a HashMap Object.

The name is the ID of the executed step with the EBProc ID concatenated to it
using the “@” symbol between the two strings. And the value is “succ”
(Successful) or notsucc (Not Successful) which denotes if the executed step was

successful or not. The step Ids are:
 getLRSpecs

 defineLRSpecs
 getECSpecNames
 defineECSpec

 subscribeECSpec
 saveMasterData

 getTransactionMasterData
 startBegForEvent

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 38/80

7.2 getOLCBProc

This method (“getOLCBProc (openLoopCBProcID : String, endpoints :

HashMap<String, String>) : OLCBProc”) returns, an already registered,
OLCBProc Object by giving as impute the Objects ID and an unordered

name/value pair list of the endpoints of the targeted servers/modules running
instances. The names of the given name/value pair list are:

 AleClientEndPoint

 AleLrClientEndPoint
 EpcisClientCaptureEndPoint

 EpcisClientQueryEndPoint

Upon requesting this service, see Figure 8 below (step 1), the PE implementation

queries at all the given EPCIS repositories (step 2) for the specific OLCBProc ID
at the TransactionID vocabulary [8] accompanied with all its children and their

attributes. The results are combined and the main structure of the OLCBProc
object is build. If there is no much for the specific OLCBProcID a

NoSuchOLCBProcIdException will be thrown.

Figure 8: Programmable Engine’s getOLCBProc Steps

The step 3 (see Figure 8 above) is carried out by following the previous created
OLCBProc structure and retrieve from the given EPCIS repositories all the

remaining Master Data attributes that are “bind” with the EBProc (e.g.
Disposition, Business Location, Business Step, Business Transaction Type and
Read Point) and place the accordingly to where they belong. The Disposition,

Business Step, Business Transaction Type are placed at the OLCBProc level as

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 39/80

they are common for all the EBProcs. And the Business Location and Read Point
are places at the CLCBProc level as they are specific for every different business

location and not the whole OLCBProc.

The next step for the PE (step 4 see Figure 8 above) is for every, retrieved from
the previous steps, EBProc to communicate with all the given Filtering and

Collection endpoints and retrieve the ECSpecs with ID that equals with the
EBProc ID.

For the ECSpecs retrieval two methods from the ALE API [2] are used:
 The “getECSpecNames() : List<String>” which Returns an unordered list

of the names of all ECSpecs that are visible to the caller.
 The “getECSpec(specName : String) : ECSpec” which Returns the ECSpec

that was provided when the ECSpec named specName was created by the
define method.

After placing the retrieved ECSpecs to the EBProc they belong to the next step
(step 5 see Figure 8 above) is to retrieve the LRSpecs which are listed to the

logicalReaders [2] list at every ECSpec.

For the LRSpec retrieval two methods from the ALELR API [2] are used:
 The “getLogicalReaderNames() : List<String>” which Returns an unordered list

of the names of all logical readers that are visible to the caller. This list SHALL
include both composite readers and base readers.

 The “getLRSpec(name : String) : LRSpec” which returns an LRSpec that
describes the logical reader named name.

This concludes the building of the OLCBProc object which, at the final step (step
4 see Figure 8 above) is replied back to the PE client that made the request.

7.3 update

This method (“update(openLoopCBProc : OLCBProc) : HashMap<String,
String>”) updates and restarts the AspireRFID middleware, for a specific and

already registered OLCBProc, from the given APDL XML document. As soon as
the method is executed it returns an unordered name/value pair list, as a
HashMap Object, that denotes if the different middleware configuration steps

were successful or not. Figure 9 below depicts the various steps PE
implementation follows to “update” an OLCBProc element at a running instance

of AspireRFID middleware.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 40/80

Figure 9: Programmable Engine’s update Steps

As soon as the method is executed, step 1 of Figure 9 above, the EPCISs Master
Data is updated (step 2). For Each EBProc the Disposition, Transaction Type,

Read Point and Business Step are “updated” to the EPCIS Repository from the
provided “EPCISMasterDataDocuments” [8] with the help of the EPCIS Capture

Interface. The EPCIS Capture End Point is provided by the EBProcs
“ExtededAttributes” [24] with name “EpcisClientCaptureEndPoint”.

The third step is (Figure 9 above), for every available EBProc that belongs to the
given OLCBProc Object, to unsubscribe the ECSpecs from the Business Event

Generator. Step 4 is to command BEG to stop serving the Event by running the
“stopBegFromEvent” command. Continuing at step 5 the PE execute the

undefined command from the ALE API for the given ECSpec so as later at step 7
to update it by running the define command. Between step 5 and 7 the
Programmable Engine runs the update command of the ALELR API so as to

update the Filtering and collection instance with the updated LRSpec.

For the ECSpec update four methods from the ALE API [2] are used:
 The “define(specName : String, spec : ECSpec) : void” which Creates a

new ECSpec having the name specName, according to spec.

 The “undefine(specName : String) : void” which Removes the ECSpec
named specName that was previously created by the define method.

 The “subscribe(specName : String, notificationURI : String) : void” which
Adds a subscriber having the specified notificationURI to the set of current
subscribers of the ECSpec named specName.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 41/80

 And the “unsubscribe(specName : String, notificationURI : String) : void”
which Removes a subscriber having the specified notificationURI from the

set of current subscribers of the ECSpec named specName.
For the LRSpec update one methods from the ALELR API [2] is used:

 And the “update(name : String, spec : LRSpec) : void” which Changes the
definition of the logical reader named name to match the specification in

the spec parameter.

Continuing, the Programmable Engine retrieves the EPCIS Query End-Point

provided from the EBProcs “ExtededAttributes” [24] with name
“EpcisClientQueryEndPoint” and uses it to get the VocabularyElementType [8]

(Step 8) for the Elementary Business Processes (EBProc) whose ID is set to be
the same as the BusinessTransaction‟s ID that BEG is going to be configured to
serve. After that, the PE retrieves the EPCIS Client Capture End-Point from the

EBProcs “ExtededAttributes” [24] with name “ECSpecSubscriptionURI” and uses
the “startBegForEvent” BEG client Service, (which requires as input the

“VocabularyElementType”, the “repositoryCaptureURL” and the
“begListeningPort” as shown in Figure 9 above) the attributes of which have

already been retrieved from the previous steps, to configure the BEG‟s
functionality for the given EBProc (Step 9). At step 10 the PE executes the

subscribe command (“subscribe(specName : String, notificationURI : String) :
void”) of the ALE API which Adds a subscriber having the BEG URI to the set of
current subscribers of the ECSpec named specName.

After Subscribing the ECSpec to the BEG running instance the final step (Step

11) is to send back to the Programmable Engine‟s client the “update” execution
status. The execution status is a name/value pair stored at a HashMap Object.
The name is the ID of the executed step with the EBProc ID concatenated to it

using the “@” symbol between the two strings. And the value is “succ”
(Successful) or notsucc (Not Successful) which denotes if the executed step was

successful or not. The step Ids are:
 updateLRSpecs
 undefineECSpecs

 unsubscribeECSpecs
 defineECSpec

 subscribeECSpec
 saveMasterData
 getTransactionMasterData

 stopBegForEvent
 startBegForEvent

7.4 stop

This method (“stop(openLoopCBProc : OLCBProc) : HashMap<String, String>”)

stops an already registered (started) OLCBProc by giving as impute the
OLCBProc. As soon as the method is executed it returns an unordered

name/value pair list, as a HashMap Object, that denotes if the different
middleware configuration steps were successful or not. Figure 10 below depicts

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 42/80

the various steps PE implementation follows to “stop” an OLCBProc element at a
running instance of AspireRFID middleware.

Figure 10: Programmable Engine’s stop Steps

As soon as the stop command is executed (step 1 of Figure 10 above) for every
EBProc an ALE API “unsubscribe(specName : String, notificationURI : String) :

void” command is executed (step 2), which Removes the BEG URI that has been
specified as the notificationURI from the set of current subscribers of the ECSpec
named specName.

The step 3 is to command BEG to stop serving the given Event by running the

“stopBegFromEvent” command and by using as eventide the EBProcs ID. The
final step (Step 4) is to send back to the Programmable Engine‟s client the
“update” execution status. The execution status is a name/value pair stored at a

HashMap Object. The name is the ID of the executed step with the EBProc ID
concatenated to it using the “@” symbol between the two strings. And the value

is “succ” (Successful) or notsucc (Not Successful) which denotes if the executed
step was successful or not. The step Ids are:

 unsubscribeECSpecs

 stopBegForEvent

7.5 start

This method (“start(openLoopCBProc : OLCBProc) : HashMap<String, String>”)
starts an already registered and stopped OLCBProc by giving as impute the

OLCBProc. As soon as the method is executed it returns an unordered

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 43/80

name/value pair list, as a HashMap Object, that denotes if the different
middleware configuration steps were successful or not. Figure 11 below depicts

the various steps PE implementation follows to “start” an OLCBProc element at a
running instance of AspireRFID middleware.

Figure 11: Programmable Engine’s start Steps

As soon as the start command is executed (step 1 of Figure 11 above) for every

EBProc the Programmable Engine retrieves the EPCIS Query End-Point provided
from the EBProcs “ExtededAttributes” [24] with name

“EpcisClientQueryEndPoint” and uses it to get the VocabularyElementType [8]
(Step 2) for the Elementary Business Processes (EBProc) whose ID is set to be

the same as the BusinessTransaction‟s ID that BEG is going to be configured to
serve. After that, the PE retrieves the EPCIS Client Capture End-Point from the
EBProcs “ExtededAttributes” [24] with name “ECSpecSubscriptionURI” and uses

the “startBegForEvent” BEG client Service, (which requires as input the

“VocabularyElementType”, the “repositoryCaptureURL” and the

“begListeningPort” as shown in Figure 11 above) the attributes of which have
already been retrieved from the previous step, to configure the BEG‟s

functionality for the given EBProc (Step 3). At step 3 the PE executes the
subscribe command (“subscribe(specName : String, notificationURI : String) :

void”) of the ALE API which Adds a subscriber having the BEG URI to the set of
current subscribers of the ECSpec named specName.

After Subscribing the ECSpec to the BEG running instance the final step (Step 5)
is to send back to the Programmable Engine‟s client the “start” execution status.

The execution status is a name/value pair stored at a HashMap Object. The name

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 44/80

is the ID of the executed step with the EBProc ID concatenated to it using the
“@” symbol between the two strings. And the value is “succ” (Successful) or

notsucc (Not Successful) which denotes if the executed step was successful or
not. The step Ids are:

 subscribeECSpec
 getTransactionMasterData

 startBegForEvent

7.6 unregister

This method (“unregister(openLoopCBProc : OLCBProc) : HashMap<String,
String>”) removes all the configurations for a specific Open Loop Composite
Business process from the middleware. As soon as the method is executed it

returns an unordered name/value pair list, as a HashMap Object, that denotes if
the different middleware configuration steps were successful or not. Figure 12

below depicts the various steps PE implementation follows to “update” an
OLCBProc element at a running instance of AspireRFID middleware.

Figure 12: Programmable Engine’s unregister Steps

Due to the fact that the EPCIS specification does not allow deleting any Master or

Event data from the database no data deletion will be conducted at that level. As
soon as the method is executed, step 1 of Figure 12 above, for every EBProc an

ALE API “unsubscribe(specName : String, notificationURI : String) : void”
command is executed (step 2), which Removes the BEG URI that has been
specified as the notificationURI from the set of current subscribers of the ECSpec

named specName. Step 3 is to command BEG to stop serving the Event by

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 45/80

running the “stopBegFromEvent” command with the EBProcs ID. Continuing at
step 4 the PE execute the undefined command from the ALE API

(“undefine(specName : String) : void”) with imput the EBProcs ID, which was
used as the ECSpec‟s name, that Removes the ECSpec that was previously

created by the define method. At step 5 the “undefine(name : String) : void”
method is executed which removes the logical reader named name.

The final step (Step 6) is to send back to the Programmable Engine‟s client the
“unregister” execution status. The execution status is a name/value pair stored

at a HashMap Object. The name is the ID of the executed step with the EBProc
ID concatenated to it using the “@” symbol between the two strings. And the

value is “succ” (Successful) or notsucc (Not Successful) which denotes if the
executed step was successful or not. The step Ids are:

 undefineECSpecs

 unsubscribeECSpecs
 undefineLRSpec

 stopBegForEvent

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 46/80

Section 8 How PE Changed the AspireRFID Configuration Process

In this section we compare the two AspireRFID configuration methods, the
conventional and the PE client method, in regard of complexity and time required

for a user (e.g. RFID integrator) to configure the AspireRFID middleware. In both
cases we assume that all the configuration files have been previously defined as
their generation is out of the scope of the Programmable Engine‟s features and

capabilities.

8.1 Configuring in the Conventional Way

The configuration of the entire AspireRFID middleware for even a relatively
simple scenario, for example like the one that is described in paragraph 9.1

below (where we define only an EBProc); requires a few steps and a number of
AspireRFID “Configurators” (e.g. ECSpec Configurator, LRSpec Configurator and

BEG configurator). Figure 13 below illustrates the different steps that an RFID
integrator should follow to configure the AspireRFID middleware using such tools.

Concretely, to define an Elementary Business Process as shown in Figure 13 below

we need to:
 Use the LRSpec Configurator plug-in where the required LRSpec xml file

needs to be retrieved (Step 1) from the folder that was stored, and then

“Define” it to the ALE module paired up with the Logical Reader name
(Step 2).

 The next step, with the help of the ECSpec configurator plug-in, would be
to “Define” the required ECSpec file which should be retrieved from the
folder that is stored (Step 3) and then be “Defined” paired up with the

ECSpec name to the ALE module (Step 4).
 The next module that should be configured is the Business Event

Generator and this is done with the use of the BEG configurator plug-in.
With this plug-in firstly we retrieve all the available, already predefined,
Business Events from the EPCIS repository (Step 5) and, as soon as we

choose the one of our interest and set up a Port for the BEG to receive
reports for the specific Business Event; we activate BEG to “serve” the

Event (Step 6).
 And for the last Step by using again the ECSpec Configurator in

“Subscribe” mode this time the already predefined ECSpec should be
Subscribed (Step 7) to the Port previously configured for the BEG to
receive Reports (at Step 6).

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 47/80

Figure 13: Required AspireRFID Configuring Steps without Programmable Engine

8.2 Configuring in the Programmable Engine Way

From the previous section we observe that, to configure the AspireRFID

middleware through the conventional way, “7” User Steps where required for
just one Elementary Business Process.

In this section we will describe what is required for the User to configure the
AspireRFID middleware with the Programmable Engine‟s plug-in (client), again

for only one EBProc. It worth‟s mentioning that even if we had to configure the
AspireRFID middleware for “N” EBProcs (even for a complete Open Loop supply
chain scenario) the steps to follow would be the same as the ones described

below and would need to be followed only once.

So assuming that the APDL XML file has already been built to configure the
AspireRFID middleware with the PE‟s User Client plug-in, the first step, as shown
in Figure 14 below, would be to retrieve the “apdl.xml” file from the folder that is

stored (Step 1). The second and final Step would be to use the “Register” service
of the PE‟s through the PE Client (Step 2).

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 48/80

Figure 14: Required AspireRFID Configuring Steps with Programmable Engine

Summing up from the above we easily observe the differences in complexity and

steps required for the two different Configuration methods which are:
 For the conventional way: 7 x “N” Steps

o Where “N” the EBProcs required to describe the entire Supply Chain
scenario.

 And for the PE‟s way only 2 Steps are required independently of how

complex the scenario is.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 49/80

Section 9 PE’s Examples

9.1 Registering an OLCBProc Example

In this Section we will use the “Receiving” Example detailed in deliverable D4.3b

(Programmable Filters – FML Specification) and in D4.4a (Programmable RFID
Solutions Specification). In the D4.3b‟s example we described how the different
modules should be configured separately, with the help of the different

specification files required, to serve the “Receiving” process of a specific
warehouse. In the D4.4a‟s example we describe how an APDL (AspireRFID

Process Description Language) specification file should be defined for a
“Receiving” EBProc so as to be able to configure the entire AspireRFID
middleware to serve a warehouse receiving process. So in this example we will

analyze how an APDL XML file is used by the PE to configure it. So let‟s start with
the problem description.

9.1.1 Describing the Problem

A Company Named “ACME” which is a Personal Computer Assembler collaborates
with a Microchip Manufacturer that provides it with the required CPUs. ACME

places regular CPU orders to the Microchip Manufacturer. ACME owns a Central
building with three Warehouses. The first warehouse named Warehouse1 has 2
Sections named Section1 and Section2. Section1 has an entrance point where

the delivered goods arrive.

ACME needs a way to automatically receive goods at Warehouse1 Section1 and
inform its WMS for the new product availability and the correct completeness of

each transaction.

9.1.2 Solution Requirements

An RFID Portal should be placed to ACME‟s Warehouse1 Section1 entrance point

which will be called ReadPoint1. The RFID portal will be equipped with one
Reader WarehouseRfidReader1. The received goods should get equipped with
pre-programmed RFID tags from their “Manufacturer”. The received goods

should be accompanied with a pre-programmed RFID enabled delivery
document. The APDL XML file described in Deliverable D4.4a (Section 8.4) [24]

should be used to configure an AspireRFID middleware (Figure 6 above) instance
which for your convenience an updated version is available at Appendix II.

9.1.3 Registering the APDL Document

As shown in Figure 14 and described in Section 8.2 above, the configuration of the
AspireRFID middleware requires two user steps. In this section we will give an

example on how the APDL XML file, built in D4.4a, is used from the
Programmable Engine to configure the AspireRFID middleware.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 50/80

As shown in Figure 4 above, after getting the command (Step 1, 2) from the user
to register this specific APDL file, the next step on the side of the Programmable

Engine‟s is to analyze the received file and discern the different CLCBProc‟s and
their EBProcs, only one of each in our case. The ID for the CLCBProc is

“urn:epcglobal:fmcg:bti:acmesupplying” and the ID of the EBProc is
“urn:epcglobal:fmcg:bte:acmewarehouse1receive” as shown in Table 19 below.

<apdl:OLCBProc id="urn:epcglobal:fmcg:bti:openloopsupplychain"

 name="AcmeSupplyChainManagement">

 <epcismd:EPCISMasterDataDocument>

 <EPCISBody>

 <VocabularyList>

 <Vocabulary type="urn:epcglobal:epcis:vtype:BusinessStep">

 <VocabularyElementList>

 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:receiving">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="receiving" />

 </VocabularyElement>

 </VocabularyElementList>

 </Vocabulary>

 <Vocabulary type="urn:epcglobal:epcis:vtype:Disposition">

 <VocabularyElementList>

 <VocabularyElement id="urn:epcglobal:fmcg:disp:in_progress">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="In_progress" />

 </VocabularyElement>

 </VocabularyElementList>

 </Vocabulary>

 <Vocabulary type="urn:epcglobal:epcis:vtype:BusinessTransactionType">

 <VocabularyElementList>

 <VocabularyElement id="urn:epcglobal:fmcg:btt:receiving">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Receiving" />

 </VocabularyElement>

 </VocabularyElementList>

 </Vocabulary>

 </VocabularyList>

 </EPCISBody>

 </epcismd:EPCISMasterDataDocument>

 <apdl:CLCBProc id="urn:epcglobal:fmcg:bti:acmesupplying"

 name="AcmeWarehouseBusinessProcess">

 <xpdl:Description>Acme Supply Chain</xpdl:Description>

 <epcismd:EPCISMasterDataDocument>

 <EPCISBody>

 <VocabularyList>

 <Vocabulary type="urn:epcglobal:epcis:vtype:BusinessLocation">

 <VocabularyElementList>

 <VocabularyElement id="urn:epcglobal:fmcg:loc:greece:pireus:mainacme">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Acme" />

 <attribute id="urn:epcglobal:epcis:mda:Address" value="Akadimias 3" />

 <attribute id="urn:epcglobal:epcis:mda:City" value="Pireus" />

 <attribute id="urn:epcglobal:epcis:mda:Country" value="Greece" />

 </VocabularyElement>

 <VocabularyElement

id="urn:epcglobal:fmcg:loc:greece:pireus:mainacme,urn:epcglobal:fmcg:loc:acme:warehouse1">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="AcmeWarehouse1" />

 <attribute id="urn:epcglobal:epcis:mda:Read Point"

 value="urn:epcglobal:fmcg:loc:rp:45632.Warehouse1DocDoor" />

 </VocabularyElement>

 </VocabularyElementList>

 </Vocabulary>

 <Vocabulary type="urn:epcglobal:epcis:vtype:ReadPoint">

 <VocabularyElementList>

 <VocabularyElement

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 51/80

 id="urn:epcglobal:fmcg:loc:rp:45632.Warehouse1DocDoor">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Warehouse1DocDoor" />

 </VocabularyElement>

 </VocabularyElementList>

 </Vocabulary>

 </VocabularyList>

 </EPCISBody>

 </epcismd:EPCISMasterDataDocument>

 <apdl:EBProc id="urn:epcglobal:fmcg:bte:acmewarehouse1receive"

 name="Warehouse1DocDoorReceive">

 ………

 </apdl:EBProc>

 <xpdl:Transitions>

 </xpdl:Transition>

 </xpdl:Transitions>

 </apdl:CLCBProc>

</apdl:OLCBProc>

Table 19: CLCBProc Object [Register APDL Example]

For each EBProc and by taking in consideration their parents‟ Objects (Attributes
and IDs), the required specification files are built to configure this AspireRFID

middleware running instance. So the Programmable Engine extracts one by one
all the required specification files from the EBProc to fill an Object which we

conveniently call “ProcessedEBProc” and is described in Table 18 above, such
object ultimately used to configure the AspireRFID running instance.

<apdl:EBProc id="urn:epcglobal:fmcg:bte:acmewarehouse1receive"

 name="Warehouse1DocDoorReceive">

 <xpdl:Description>Acme Warehouse 3 Receiving ReadPoint5 Gate3

 </xpdl:Description>

 <xpdl:TransitionRestrictions>

 </xpdl:TransitionRestriction>

 </xpdl:TransitionRestrictions>

 <xpdl:ExtendedAttributes>

 <xpdl:ExtendedAttribute Name="XOffset" Value="204" />

 <xpdl:ExtendedAttribute Name="YOffset" Value="204" />

 <xpdl:ExtendedAttribute Name="CellHeight" Value="30" />

 <xpdl:ExtendedAttribute Name="CellWidth" Value="313" />

 <xpdl:ExtendedAttribute

 Name="ECSpecSubscriptionURI"

 Value="http://localhost:9999" />

 <xpdl:ExtendedAttribute

 Name="AleClientEndPoint"

 Value="http://localhost:8080/aspireRfidALE/services/ALEService" />

 <xpdl:ExtendedAttribute

 Name="AleLrClientEndPoint"

 Value="http://localhost:8080/aspireRfidALE/services/ALELRService" />

 <xpdl:ExtendedAttribute

 Name="EpcisClientCaptureEndPoint"

 Value="http://localhost:8080/aspireRfidEpcisRepository/capture" />

 <xpdl:ExtendedAttribute

 Name="EpcisClientQueryEndPoint"

 Value="http://localhost:8080/aspireRfidEpcisRepository/query" />

 <xpdl:ExtendedAttribute

 Name="BegEngineEndpoint"

 Value="http://localhost:8080/aspireRfidBEG/begengine" />

 </xpdl:ExtendedAttributes>

 <apdl:DataFields>

 ………

 </apdl:DataFields>

</apdl:EBProc>

Table 20: AcmeWarehouse3Ship EBProc

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 52/80

From the part of the EBProc shown in Table 20 above and more specifically the

“ExtendedAttributes” the PE extracts the following information for the
“ProcessedEBProc” object:

 Id: urn:epcglobal:fmcg:bte:acmewarehouse1receive
 Name: AcmeWarehouse3Ship

 ecSpecSubscriptionURI: http://localhost:9999
 aleClientEndPoint:

http://localhost:8080/aspireRfidALE/services/ALEService

 aleLrClientEndPoint:
http://localhost:8080/aspireRfidALE/services/ALELRService

 epcisClientCaptureEndPoint:
http://localhost:8080/aspireRfidEpcisRepository/capture

 epcisClientQueryEndPoint:
http://localhost:8080/aspireRfidEpcisRepository/query

Which in later steps are used from the PE to configure the AspireRFID running
instance.

9.1.3.1 ALE-LR Setup

For the APDL document only one Logical Reader is defined, which appears in

Table 21 below.

<apdl:DataField type="LRSpec" name="SmartLabImpinjSpeedwayLogicalReader">

 <alelr:LRSpec>

 <isComposite>false</isComposite>

 <readers />

 <properties>

 <property>

 <name>Description</name>

 <value>This Logical Reader consists of read point 1,2,3

 </value>

 </property>

 <property>

 <name>ConnectionPointAddress</name>

 <value>192.168.212.238</value>

 </property>

 <property>

 <name>ConnectionPointPort</name>

 <value>5084</value>

 </property>

 <property>

 <name>ReadTimeInterval</name>

 <value>4000</value>

 </property>

 <property>

 <name>PhysicalReaderSource</name>

 <value>1,2,3</value>

 </property>

 <property>

 <name>RoSpecID</name>

 <value>1</value>

 </property>

 <property>

 <name>ReaderType</name>

 <value>org.ow2.aspirerfid.ale.server.readers.llrp.LLRPAdaptor

 </value>

 </property>

 </properties>

 </alelr:LRSpec>

</apdl:DataField>

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 53/80

Table 21: LRSpec DataField

As soon as the PE retrieves the LRSpec from the APDL file it stores it to the
lrSpecs element of the ProcessedEBProc (see Table 18) Object in a

“SmartLabImpinjSpeedwayLogicalReader”/ “LRSpec Dynamic specification
Object” pair manner. So the third Step as shown in Figure 7 above is to get all the

Already Defined LRSpec names from the Running Instance of the AspireRFID
middleware with the getLogicalReaderNames() ALE-LR command and if the

“SmartLabImpinjSpeedwayLogicalReader” is not included in the returned list an
ALE-LR define(“SmartLabImpinjSpeedwayLogicalReader”, LRSpec) is executed. If

the name is already included then an ALE-LR update
(“SmartLabImpinjSpeedwayLogicalReader”, LRSpec) is executed (Step 4).

9.1.3.2 ALE Setup

The ECSpec required for the AspireRFID configuration is given from the ECSpec

“DataField” type. The change required to be done before storing it to the ecSpec
Attribute (for later use) of the ProcessedEBProc Object (see Table 18) is to

concatenate to Every ECReport name, which in our case is the
“bizTransactionIDs” and the “transactionItems” (as we want BEG to produce
Object Events) with the “@” symbol between them and the EBProcs ID which is

“urn:epcglobal:fmcg:bte:acmewarehouse1receive” so as to be used at the BEG.

So the ECSpec‟s ECReport names will become:
 bizTransactionIDs@urn:epcglobal:fmcg:bte:acmewarehouse1receive
 transactionItems@urn:epcglobal:fmcg:bte:acmewarehouse1receive

<apdl:DataField type="ECSpec" name="RecievingECSpec">

 <ale:ECSpec includeSpecInReports="false">

 <logicalReaders>

 <logicalReader>SmartLabImpinjSpeedwayLogicalReader

 </logicalReader>

 </logicalReaders>

 <boundarySpec>

 <repeatPeriod unit="MS">5500</repeatPeriod>

 <duration unit="MS">5500</duration>

 <stableSetInterval

 unit="MS">0</stableSetInterval>

 </boundarySpec>

 <reportSpecs>

 <reportSpec reportOnlyOnChange="false"

 reportName="bizTransactionIDs" reportIfEmpty="true">

 <reportSet set="CURRENT" />

 <filterSpec>

 <includePatterns>

 <includePattern>urn:epc:pat:gid-96:145.12.*

 </includePatterns>

 <excludePatterns />

 </filterSpec>

 <groupSpec />

 <output includeTag="true" includeRawHex="true"

 includeRawDecimal="true" includeEPC="true" includeCount="true" />

 </reportSpec>

 <reportSpec reportOnlyOnChange="false"

 reportName="transactionItems" reportIfEmpty="true">

 <reportSet set="ADDITIONS" />

 <filterSpec>

 <includePatterns>

 <includePattern>urn:epc:pat:gid-96:145.233.*

 </includePattern>

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 54/80

 <includePattern>urn:epc:pat:gid-96:145.255.*

 </includePattern>

 </includePatterns>

 <excludePatterns />

 </filterSpec>

 <groupSpec />

 <output includeTag="true" includeRawHex="true"

 includeRawDecimal="true" includeEPC="true" includeCount="true" />

 </reportSpec>

 </reportSpecs>

 <extension />

 </ale:ECSpec>

</apdl:DataField>

Table 22: ECSpec DataField

Continuing with Step 5 (Figure 7) the PE implementation gets all the defined

ECSpec names, which have been prior defined from the AspireRFID running
instance with the ALE‟s getECSpecNames() command. If the “RecievingECSpec”,

which is the ECSpec name of our EBProc, is returned then the PE will execute an
ALE undefine(“RecievingECSpec”) command and a define(“RecievingECSpec”,

ECSpec) ALE command, one following the other, so as to achieve the Update of
the ECSpec. If the “RecievingECSpec” is not returned then the PE will only
execute an ALE define(“RecievingECSpec”, ECSpec) command.

9.1.3.3 EPC Information Service Setup

The next thing that ASPIRE‟s PE takes care of is, the retrieval from the APDL and
configuration to the AspireRFID of the EBProcs Master Data. For the EBProc the
Disposition, Transaction Type, Read Point and Business Step are retrieved and

saved one by one, if they do not priory exist, from the given
“EPCISMasterDataDocument” [8], shown in Table 23, to the EPCIS repository

through the ASPIRE‟s EPCIS Master Data capture Interface.
So in our case we have for:

Disposition: urn:epcglobal:fmcg:disp:in_progress
Transaction Type: urn:epcglobal:fmcg:btt:receiving
Read Point: urn:epcglobal:fmcg:loc:rp:warehouse1docdoor

And Business Step: urn:epcglobal:fmcg:bizstep:receiving

<apdl:DataField type="EPCISMasterDataDocument"

 name="RecievingMasterData">

 <epcismd:EPCISMasterDataDocument>

 <EPCISBody>

 <VocabularyList>

 <Vocabulary

 type="urn:epcglobal:epcis:vtype:BusinessTransaction">

 <VocabularyElementList>

 <VocabularyElement

 id="urn:epcglobal:fmcg:bte:acmewarehouse1receive">

 <attribute

 id="urn:epcglobal:epcis:mda:event_name"

 value="Warehouse1DocDoorReceive" />

 <attribute

 id="urn:epcglobal:epcis:mda:event_type"

 value="ObjectEvent" />

 <attribute

 id="urn:epcglobal:epcis:mda:business_step"

 value="urn:epcglobal:fmcg:bizstep:receiving" />

 <attribute

 id="urn:epcglobal:epcis:mda:business_location"

 value="urn:epcglobal:fmcg:loc:acme:warehouse1" />

 <attribute

 id="urn:epcglobal:epcis:mda:disposition"

 value="urn:epcglobal:fmcg:disp:in_progress" />

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 55/80

 <attribute

 id="urn:epcglobal:epcis:mda:read_point"

 value="urn:epcglobal:fmcg:loc:45632.Warehouse1DocDoor"/>

 <attribute

 id="urn:epcglobal:epcis:mda:transaction_type"

 value="urn:epcglobal:fmcg:btt:receiving" />

 <attribute

 id="urn:epcglobal:epcis:mda:action"

 value="ADD" />

 </VocabularyElement>

 </VocabularyElementList>

 </Vocabulary>

 </VocabularyList>

 </EPCISBody>

 </epcismd:EPCISMasterDataDocument>

</apdl:DataField>

Table 23: EPCISMasterDataDocument DataField

For the Business Transaction EPCIS vocabulary type the entire OLCBProc
Structure is considered and a given EBProc is saved as the Child of its CLCBProc

and in its turn as a child of its OLCBProc. For the last task, the different Object
ID‟s are used to build the aforementioned structure (Step 7 of the PE‟s

configuration process). So the entire “EPCISMasterDataDocument” given in the
EBProc description will be saved at the EPCIS repository as a child of its
OLCBProc (“urn:ow2:aspirerfid:aprod:firstopenloopdescribedprocess”) and its

CLCBProc (“urn:epcglobal:fmcg:bti:acmesupplying”). See Table 19 above.

9.1.3.4 BEG Setup

Continuing, the Programmable Engine uses the EPCIS Query End-Point, which

was retrieved from the EBProcs “ExtededAttributes” above
(“http://localhost:8080/aspireRfidEpcisRepository/query”), and use it to get the
VocabularyElementType [8] (Step 8) for the

“urn:epcglobal:fmcg:bte:acmewarehouse1receive” Elementary Business
Processes (EBProc) ID which matches the BusinessTransaction‟s ID that BEG will

be configured to serve. For the next step the PE uses the EPCIS Client Capture
End-Point (“http://localhost:8080/aspireRfidEpcisRepository/capture”) and use
the “startBegForEvent” BEG client Service, by using as imput the

VocabularyElementType that was prior retrieved, the “repositoryCaptureURL” and
the “begListeningPort” as shown in Figure 7 above (Step 9).

After the aforementioned configuration BEG is ready to receive ECReports so the

next Step (Step 10) is to Subscribe the “Defined” ECSpec, with the ALE
subscribe(“RecievingECSpec”, “http://localhost:9999”) from the previous step
(Step6), to the BEG Running instance (“ecSpecSubscriptionURI” Table 18).

At this point it worth‟s to mention that AspireRFID architecture uses Fosstrak [1]

EPCIS and F&C (ALE) implementations that ASPIRE has enhanced and tailored to
meet its needs.

9.1.3.5 Building the Example’s APDL file using the BPWME

Figure 10 depicts the above simple example in the BPWME AspireRFID IDE plug-

in.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 56/80

Figure 15: AcmeWarehouse1Recieve Business Process in BPWME plug-in

As we can see in Figure 15, when the user wants to generate an Object Event,

which is the case in this example, the system automatically provides only the
required fields for that specific event. So at the ECSpec the Event‟s required
reports are already in place and is asked form the user only to fill the missing tag

patterns. Moreover when the Logical reader is configured it is automatically
added to the ECSpec that is used from this Event. We can also see that the

available Business Locations, which have prior been set up with the help of
Master Data Editor, are bind with the example‟s CLCBProc. So all the EBProcs in
it can use them directly and are available at their Transaction Attributes. In

Figure 16 below the automatically generated APDL xml file can be shown at the
APDL tab of the main editor window.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 57/80

Figure 16: Produced APDL xml file (APDL tab) of the BPWME

9.1.3.6 Process Description

ACME gives an order with a specific deliveryID to the Microchip Manufacturer.

With the previous action AspireRFID Connector subscribes to the AspireRFID
EPCIS Repository to retrieve events concerning the specific deliveryID. As
visualized in Figure 3 the order arrives to ACME‟s premises. ACME‟s RFID portal

(ReadPoint1) reads the deliveryID and all the products that follow with the help
of WarehouseRfidReader1. AspireRFID ALE filters out the readings and sends two

reports to AspireRFID BEG, one with the deliveryID and one with all the products
tags. AspireRFID BEG collects these reports, binds the deliveryID with the

products tags and sends this event to the AspireRFID EPCIS Repository. The
AspireRFID EPCIS Repository informs the Connector [37] for the incoming event

which in his turn sends this information to ACME‟s WMS. When the WMS confirms
that all the requested products were delivered it sends a “transaction finish”
message to the AspireRFID Connector which in his turn unsubscribe for the

specific deliveryID and sends a “transaction finish” to the RFID Repository.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 58/80

Figure 17: Acme computer parts Delivery Example

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 59/80

Section 10 Business Process Workflow Management Editor (BPWME)
Introduction

ASPIRE Architecture introduces a tool, called Business Process Workflow
Management Editor (BPWME) plug-in (part of the AspireRFID IDE) that will be

capable of producing APDL files and ultimately configure the AspireRFID
middleware with the help of the Programmable Engine‟s Client.

One of the benefits of an RFID Solution Language is that it can boost visual
development of RFID solutions, which could obviate the need for tedious low-

level programming. In the case of the APDL language, ASPIRE have designed
and prototyped an Eclipse plug-in to enable the visual modelling and

configuration of RFID enabled processes. This tool is conveniently called Business
Process Workflow Management Editor (BPWME) and is illustrated in Figure 18

below.

Figure 18: BPWME plug-in

BPWME provides to the RFID designer the ability to describe a complex RFID

solution with the help of a workflow diagram and to be guided to give as input all
the required information so as to build the desired EBProcs.

Our experience with BPWME shows that a workflow process design is a more

straightforward procedure compared to detailed configurations of distributed
software and hardware components by using various configuration interfaces. As
such, the use of the workflow editor reduces significantly the time and effort

required to configure an RFID solution. Additionally, it provides the ability of
registering and storing complete RFID solutions in a single configuration file. This

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 60/80

can greatly facilitate reusability across classes of similar RFID solutions, since it
allows adapting existing solutions rather than developing from scratch.

Furthermore, BPWME reduces the knowledge overhead imposed by the need to
use various tools, while at the same time easing debugging and maintenance

efforts.

The BPWME is based on the Eclipse Rich Client Platform (RCP) design, which is
what it is used for the AspireRFID IDE design, and more specifically at the:

 Eclipse Graphical Modelling Framework (GMF), described in Section 10.1

below which combines the:
o Eclipse Modelling Framework (EMF)

o And the Eclipse Graphical Editing Framework (GEF)

 In Figure 18 above someone can distinguish the main Design tab, the Diagrams

outline, the Properties and the Toolbox. At the Design tab a pallet is provided,
with APDL‟s main components, which a User can drag and drop inside the design

area. As soon as the User clicks on a component inside the design area its
properties appears at the Property tab where they can be changed. If the design

gets too big the user can be navigated from the Outline tab where he can choose
the area that appears in at the Design tab.

The Programmable Engine‟s client will be embedded in this tool so as to achieve
the direct registration, of the AspireRFID middleware as soon as an APDL xml file

is created. The ability of real time interaction of the BPWME plug-in through the
PE‟s “olcbproccontrol”, “clcbproccontrol” and “ebproccontrol” Interfaces will be
investigated.

The task of Designing and Implementing the BPWME plug-in, as it does not have

a deliverable dedicated to it, it will be further reported to the D4.5.

10.1 Graphical Modelling Framework

GMF (Graphical Modelling Framework) is a framework for creating a generic
graphical interface in eclipse by combining EMF (Eclipse Modelling Framework)

and GEF (Graphical Editing Framework) technology together. The output of a
GMF project can be an RCP application or an Eclipse plug-in. The Figure 19 below

shows the main components and models used during GMF-based development.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 61/80

Figure 19: Main components and models used during GMF-based development [25]

To create a GMF project successfully, first we should define the domain model. For the
Aspire project, the domain model is given by the APDL Specification [24]. Since we only
need to care about the objects we are going to present in the editor, we simplify the APDL
Specification as the following model also shown in Figure 20 below. In this model we create
three new abstract objects for the editor:

 the WorkflowMap,

 the Node,

 and the Connection.

The WorkflowMap is the root of the editor canvas, which includes other nodes and edges.
The Node is an abstraction of all the nodes on the editor. The Connection is a direct edge
between two Nodes, which creates the relationship between the Nodes.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 62/80

Figure 20: APDL’s GMF abstract objects

Guided by the project dashboard, we can then define the tool palette, the figures we want to
show in the editor, and the mapping between the domain model and the figures. Then we do
the code generation. During each step, there are several choices we can make to adjust the
configuration of the project. At last, we may modify the code itself to reflect exactly our own
needs.

We mainly have three jobs when modifying the code.

1. Introduce APDL Specification file to the system. Let it work with the existing model file
and map file consistently.

2. Introduce other editing policies for editing EBProc process.
3. And finally let the editor work with Aspire RFID IDE seamlessly.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 63/80

Section 11 Conclusions

The deliverable has outlined the specifications of the ASPIRE programmable
engine and demonstrated its features, especially those aiming at easing the

configuration of ASPIRE-based solutions and maximising its adaptability.

Briefly, the programmable engine allows users to deploy highly configurable

complex RFID solutions at a fraction of time comparing with the classic
configuration methods. The deployment is enhanced by a business scenario

which is defined using a business process language (APDL) that is translated to
middleware-understandable code by the programmable engine. The deliverable

outlines the interfaces of the Aspire Programmable Engine and it moreover
elaborates on how the PE communicates with other ASPIRE RFID modules.

PE in combination with the APDL is a solution that, if properly employed, has the
potential to offer benefits, such as TCO minimization, standards compliance,

facilitation in the development of complex RFID process-based solutions etc.
However, PE is not a solution that is applicable under any circumstances. PE
should be used in complex RFID solutions where all the EPC layers are used and

not in simple, standalone RFID applications.

PE development involved several challenges, among which are worth mentioning
striking the balances between simplicity and flexibility; maintaining compatibility
with the existing infrastructure (specifically that of EPCglobal); and providing the

adequate level of abstraction to facilitate use.

The advantages of the PE approach are clear: firstly, the code is isolated from
the specifics of the implementation. Secondly, implementations happen in an
atomic way, therefore avoiding errors and inconsistencies from partial,

uncoordinated developments. Thirdly, previous implementations can be „reused‟,
so enabling a rich source of applications and benefits. Finally, implementations

are transferrable to other platforms, applications and industries.

Finally in this deliverable except from the APIs description we have included a

brief comparison showing how the PE facilitates the development of RFID
solutions based on the ASPIRE middleware and a brief example of the use of the

programmable engine.

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 64/80

Section 12 List of Figures

Figure 1: Middle Middleware configuration using APDL [17]10
Figure 2: Decomposing an Inter-enterprise Business process12
Figure 3: Complete supply chain scenario example. ..13
Figure 4: APDL‟ Schema design (OLCBProc) ..15
Figure 5: APDL‟s Schema design (EBProc) ...16
Figure 6: Programmable Engine role in the AspireRFID Architecture19
Figure 7: Programmable Engine‟s Register Steps ...34
Figure 8: Programmable Engine‟s getOLCBProc Steps ...38
Figure 9: Programmable Engine‟s update Steps ...40
Figure 10: Programmable Engine‟s stop Steps ..42
Figure 11: Programmable Engine‟s start Steps ...43
Figure 12: Programmable Engine‟s unregister Steps ..44
Figure 13: Required AspireRFID Configuring Steps without Programmable Engine47
Figure 14: Required AspireRFID Configuring Steps with Programmable Engine48
Figure 15: AcmeWarehouse1Recieve Business Process in BPWME plug-in56
Figure 16: Produced APDL xml file (APDL tab) of the BPWME57
Figure 17: Acme computer parts Delivery Example ..58
Figure 18: BPWME plug-in ...59
Figure 19: Main components and models used during GMF-based development [25]61
Figure 20: APDL’s GMF abstract objects ..62

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 65/80

Section 13 List of Tables

Table 1: Business Transaction ID Attributes ..11
Table 2: Event fields with Event Types mapping (Master Data) [8][35]13
Table 3: ECReports name and Event Bindingbeing used at the ECSpec Definition 14
Table 4: Namespaces used in APDL ..15
Table 5: BEG server Web Service Interface ...22
Table 6: OLCBProcControl API ..26
Table 7: OLCBProcControl Interface Methods ..27
Table 8: Exceptions in the OLCBProcControl Interface ..28
Table 9: Exceptions Raised by each OLCBProcControl Interface Method28
Table 10: OLCBProcControl API ..28
Table 11: CLCBProcControl Interface Methods ..30
Table 12: Exceptions in the CLCBProcControl Interface ..30
Table 13: Exceptions Raised by each CLCBProcControl Interface Method30
Table 14: EBProcControl API ...30
Table 15: EBProcControl Interface Methods ...32
Table 16: Exceptions in the EBProcControl Interface ...32
Table 17: Exceptions Raised by each EBProcControl Interface Method32
Table 18: ProcessedEBProc Object ..35
Table 19: CLCBProc Object [Register APDL Example] ..51
Table 20: AcmeWarehouse3Ship EBProc ..51
Table 21: LRSpec DataField ..53
Table 22: ECSpec DataField ..54
Table 23: EPCISMasterDataDocument DataField ..55

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 66/80

Section 14 List of Acronyms

ALE Application Level Event
APDL AspireRFID Process Description Language

API Application Programming Interface
ASPIRE Advanced Sensors and lightweight Programmable middleware for

Innovative Rfid Enterprise applications
BEG Business Event Generator
BPWME Business Process Workflow Management Editor

BTB Bluetooth Bridge
CC Connector Client

CE Connector Engine
CLCBProc Close Loop Composite Business Process
DNS Directory Name Service

EBProc Elementary Business Process
EPC Electronic Product Code

EPCIS Electronic Product Code Information Services
ERP Enterprise Resource Planning
F&C Filtering and Collection

GIAI Global Individual Asset Identifier
GLN Global Location Number

GMF Graphical Modelling Framework
GPS Global Positioning System
GRAI Global Returnable Asset Identifier

GS1 Global Standard 1 (Standardisation group)
GTIN Global Trade Identification Number

HAL Hardware Abstraction Layer
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment

IP Internet Protocol
IS Information System or Information Service

ISO International Standard Organization
IT Information Technology
J2ME Java 2 Micro Edition

JAS Java Application Server
JAXB Java Architecture for XML Binding

JaxWS Java web server
JCA Java Connector Architecture

JCP Java Community Process
JMS Java Messaging Service
JMX Java Management Extensions

JVM Java Virtual Machine
LGPL Lesser General Public License

LLRP Low Level Reader Protocol
ODBC Object Database Connectivity
OLCBProc Open Loop Composite Business Process

ONS Object Name Service

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 67/80

OSI Open System Interconnection
OSS Open Source Software

OW2 Open source community which is the merge of the ObjectWeb
Consortium and Orientware)

PE Programmable Engine
RDBMS Relational database management system

RFID Radio Frequency Identification
RP Reader Protocol
SME Small and Medium Enterprise

SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol
SSCC Serial Shipping Container Code
SVN Subversion

TCO Total Cost of Ownership
TCP Transfer Control Protocol

TDS Tag Data Standard
TDT Tag Data Translation
UML Universal Mark-up Language

URI Uniform Resource Identifier
URN Uniform Resource Name

WMS Warehouse Management System
XML Extensible Markup Language

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 68/80

Section 15 Acknowledgements

Part of this work has been carried out in the scope of Master Students Thesis that has been
contributed to the AspireRFID open source software. More specifically the following students
have partially worked for the Implementations:
Yongming Luo - AIT Business Process Workflow Management Editor (BPWME)
Introduction Section 10)
Karageorgiou Eleftherios Business Process Workflow Management Editor (BPWME)
Introduction Section 10)

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 69/80

Section 16 References and bibliography

[1] FossTrak Project, http://www.fosstrak.org/index.html
[2] EPCglobal, “The Application Level Events (ALE) Specification, Version 1.1”,

February. 2008, available at: http://www.epcglobalinc.org/standards/ale
[3] EPCglobal, “Low Level Reader Protocol (LLRP), Version 1.0.1, August 13”,

2007, available at: http://www.epcglobalinc.org/standards/llrp

[4] EPCglobal, “Reader Protocol Standard, Version 1.1, June 21”, 2006 available
at: http://www.epcglobalinc.org/standards/rp

[5] EPCglobal, “Reader Management 1.0.1, May 31”, 2007 available at:
http://www.epcglobalinc.org/standards/rm

[6] EPCglobal, “EPCglobal Tag Data Standards, Version 1.4”, June 11, 2008,
available at: http://www.epcglobalinc.org/standards/tds/

[7] EPCglobal, “EPCglobal Tag Data Translation (TDT) 1.0”, January 21, 2006

available at: http://www.epcglobalinc.org/standards/tdt/
[8] EPC Information Services (EPCIS) Specification, Version 1.0.1, September 21,

2007 available at: http://www.epcglobalinc.org/standards/epcis/
[9] LLRP Toolkit, http://www.llrp.org/
[10] Matthias Lampe, Christian Floerkemeier, “High-Level System Support for

Automatic-Identification Applications”, In: Wolfgang Mass, Detlef Schoder,
Florian Stahl, Kai Fischbach (Eds.): Proceedings of Workshop on Design of

Smart Products, pp. 55-64, Furtwangen, Germany, March 2007.
[11] C.Floerkemeier, C. Roduner, and M. Lampe, RFID Application Development

With the Accada Middleware Platform, IEEE Systems Journal, Vol. 1, No. 2,

December 2007.
[12] C. Floerkemeier and S. Sarma, “An Overview of RFID System Interfaces

and Reader Protocols”, 2008 IEEE International Conference on RFID, The
Venetian, Las Vegas, Nevada, USA, April 16-17, 2008.

[13] Russell Scherwin and Jake Freivald, Reusable Adapters: The Foundation of

Service-Oriented Architecture, 2005.
[14] The XMOJO Project Product Documentation, available at:

http://www.jmxguru.com/products/xmojo/docs/index.html
[15] Java Management Extensions (JMX) Technology Overview, available at:

http://java.sun.com/j2se/1.5.0/docs/guide/jmx/overview/architecture.html

[16] Panos Dimitropoulos and John Soldatos, „RFID-enabled Fully Automated
Warehouse Management: Adding the Business Context‟, submitted to the

International Journal of Manufacturing Technology and Management (IJMTM),
Special Issue on: "AIT-driven Manufacturing and Management".

[17] Architecture Review Committee, “The EPCglobal Architecture Framework,”

EPCglobal, July 2005, available at: http://www.epcglobalinc.org.
[18] Achilleas Anagnostopoulos, John Soldatos and Sotiris G. Michalakos,

„REFiLL: A Lightweight Programmable Middleware Platform for Cost Effective
RFID Application Development‟, accepted for publication to the Journal of
Pervasive and Mobile Computing (Elsevier).

[19] WS-I, Basic Profile v1.0, available at: http://www.ws-
i.org/Profiles/BasicProfile-1.0-2004-04-16.html.

http://www.accada.org/index.html
http://www.epcglobalinc.org/standards/ale
http://www.epcglobalinc.org/standards/llrp
http://www.epcglobalinc.org/standards/rp
http://www.epcglobalinc.org/standards/rm
http://www.epcglobalinc.org/standards/tds/
http://www.epcglobalinc.org/standards/tdt/
http://www.epcglobalinc.org/standards/epcis/
http://www.llrp.org/
http://www.jmxguru.com/products/xmojo/docs/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/overview/architecture.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 70/80

[20] Benita M. Beamon, “Supply chain design and analysis: Models and
methods”, International Journal of Production Economics, Vol. 55 pp. 281-

294, 1998
[21] John Soldatos, Nikos Kefalakis, Nektarios Leontiadis, et. al., “Core ASPIRE

Middleware Infrastructure”, ASPIRE Project Public Deliverable D3.4b, June
2010, publicly available at:

http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/Deliverables
[22] Nikos Kefalakis, John Soldatos, Efstathios Mertikas and Neeli R. Prasad,

“Generating Business Events in an RFID Network”, submitted to IEEE

International Conference on RFID - Technologies and Applications 2011.
[23] John Soldatos, Nikos Kefalakis, Nektarios Leontiadis, et. al.,

“Programmable Filters – FML Specification”, ASPIRE Project Public Deliverable
D4.3b, Dec 2009, publicly available at:
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/Deliverables

[24] Nikos Kefalakis, John Soldatos, et. al., “Programmable RFID Solutions
Specification”, ASPIRE Project Public Deliverable D4.4b, June 2010, publicly

available at:
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/Deliverables

[25] “Eclipse Graphical Modelling Framework Tutorial”, available at:
http://wiki.eclipse.org/GMF_Tutorial

[26] “CXF Servlet Transport”, available at: http://cxf.apache.org/docs/servlet-

transport.html
[27] Workflow Management Coalition Workflow Standard, “Workflow Process

Definition Interface -- XML Process Definition Language V1.0”, Document
Number WFMC-TC-1025, October 25, 2002

[28] Jan Holmström, Mikko Ketokivi and Ari-Pekka Hameri ”Bridging Practice

and Theory: a Design Science Approach” Decision Sciences 40 (1), 2009.
[29] Creswell, J., “Research design: Qualitative, quantitative, and mixed

methods approaches”, Sage Pubns, 2008.
[30] Hevner, A., March, S., Park, J. & Ram, S., “Design Science in Information

Systems Research”, Management information systems quarterly 28(1), 2004,

pp. 75–106.
[31] Jackson, M., “Software Requirements and Specifications: A Lexicon of

Practice, Principles and Prejudices”, Addison Wesley, 1995.
[32] Rhea Wessel, “Staff Jeans to Introduce RFID-enabled Customer Services”,

RFID Journal, Oct 2010.

[33] Rifidi Project, http://www.rifidi.org/
[34] Nuseibeh, B. and Easterbrook, S., “Requirements engineering: a

roadmap”, Int‟l Conf. on Software Engineering, Ireland, 2000.
[35] BEAWebLogic RFID Enterprise Server™, “Understanding the Event, Master

Data, and Data Exchange Services”, Version 2.0, Revised: October 12, 2006.

[36] N. Kefalakis, J. Soldatos, N. Konstantinou, N. Prasad: APDL: A Reference
XML Schema for Process-centered Definition of RFID Solutions, In Int J. of

Systems and Software (JSS), Elsevier, 2011 (doi:10.1016/j.jss.2011.02.036).
[37] Nektarios Leontiadis, Nikos Kefalakis, John Soldatos, “Bridging RFID

Systems and Enterprise Applications through Virtualized Connectors",

International Journal of Automated Identification Technology (IJAIT), Vol. 1,
No.2, 2010.

http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/Deliverables
http://wiki.eclipse.org/GMF_Tutorial
http://cxf.apache.org/docs/servlet-transport.html
http://cxf.apache.org/docs/servlet-transport.html
http://www.rifidi.org/

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 71/80

Appendix I APDL XML Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 targetNamespace="urn:ow2:aspirerfid:apdlspec:xsd:1"

 xmlns:ale="urn:epcglobal:ale:xsd:1"

 xmlns:alelr="urn:epcglobal:alelr:xsd:1"

 xmlns:apdl="urn:ow2:aspirerfid:apdlspec:xsd:1"

 xmlns:epcismd="urn:epcglobal:epcis-masterdata:xsd:1"

 xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0">

 <xs:import namespace="urn:epcglobal:alelr:xsd:1"

 schemaLocation="EPCglobal-ale-1_1-alelr.xsd"></xs:import>

 <xs:import namespace="urn:epcglobal:ale:xsd:1"

 schemaLocation="EPCglobal-ale-1_1-ale.xsd"></xs:import>

 <xs:import namespace="urn:epcglobal:epcis-masterdata:xsd:1"

 schemaLocation=”EPCglobal-epcis-masterdata-1_0.xsd"></xs:import>

 <xs:import namespace="http://www.wfmc.org/2002/XPDL1.0"

 schemaLocation="XPDL.xsd"></xs:import>

 <xs:element name="OLCBProc" type="apdl:OLCBProc" />

 <xs:element name="CLCBProc" type="apdl:CLCBProc" />

 <xs:element name="EBProc" type="apdl:EBProc" />

 <xs:complexType name="OLCBProc">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="apdl:CLCBProc" />

 <xs:element ref="xpdl:Transitions" />

 </xs:sequence>

 <xs:attribute name="id" use="required" type="xs:anyURI" />

 <xs:attribute name="name" use="required"

 type="xs:NCName" />

 </xs:complexType>

 <xs:complexType name="CLCBProc">

 <xs:sequence>

 <xs:element ref="xpdl:Description" />

 <xs:element maxOccurs="unbounded" ref="apdl:EBProc" />

 <xs:element minOccurs="0" maxOccurs="1"

 ref="epcismd:EPCISMasterDataDocument" />

 <xs:element ref="xpdl:Transitions" />

 </xs:sequence>

 <xs:attribute name="id" use="required" type="xs:anyURI" />

 <xs:attribute name="name" use="required"

 type="xs:NCName" />

 </xs:complexType>

 <xs:complexType name="EBProc">

 <xs:sequence>

 <xs:element ref="xpdl:Description" />

 <xs:element ref="xpdl:TransitionRestrictions" />

 <xs:element ref="xpdl:ExtendedAttributes" />

 <xs:element ref="apdl:DataFields" />

 </xs:sequence>

 <xs:attribute name="id" type="xs:anyURI" />

 <xs:attribute name="name" type="xs:NCName" />

 </xs:complexType>

 <xs:element name="DataFields">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="3" maxOccurs="unbounded"

 ref="apdl:DataField" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="DataField">

 <xs:complexType>

 <xs:choice>

 <xs:element maxOccurs="1" ref="ale:ECSpec" />

 <xs:element maxOccurs="1"

 ref="epcismd:EPCISMasterDataDocument" />

 <xs:element maxOccurs="1" ref="alelr:LRSpec" />

 </xs:choice>

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 72/80

 <xs:attribute name="name" use="required"

 type="xs:NCName" />

 <xs:attribute name="type" use="required"

 type="xs:NCName" />

 </xs:complexType>

 </xs:element>

</xs:schema>

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 73/80

Appendix II APDL files

Register APDL Example

<?xml version="1.0" encoding="UTF-8"?>

<apdl:OLCBProc id="urn:epcglobal:fmcg:bti:openloopsupplychain"

 name="AcmeSupplyChainManagement" xmlns:ale="urn:epcglobal:ale:xsd:1"

 xmlns:alelr="urn:epcglobal:alelr:xsd:1" xmlns:apdl="urn:ow2:aspirerfid:apdlspec:xsd:1"

 xmlns:epcglobal="urn:epcglobal:xsd:1" xmlns:epcis="urn:epcglobal:epcis:xsd:1"

 xmlns:epcismd="urn:epcglobal:epcis-masterdata:xsd:1"

 xmlns:p="http://www.unece.org/cefact/namespaces/StandardBusinessDocumentHeader"

 xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ow2:aspirerfid:apdlspec:xsd:1

../aspireRfidSpecificationLanguage/AspireSpesificationLanguage.xsd ">

 <epcismd:EPCISMasterDataDocument>

 <EPCISBody>

 <VocabularyList>

 <Vocabulary type="urn:epcglobal:epcis:vtype:BusinessStep">

 <VocabularyElementList>

 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:receiving">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="receiving" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:picking">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Picking" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:shipping">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="shipping" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:shipment">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Shipment" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:production">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Production" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:accepting">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Accepting" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:inspecting">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Inspecting" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:storing">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Storing" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:packing">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Packing" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:loading">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Loading" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:commissioning">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Commissioning" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:decommissioning">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Decommissioning" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:destroying">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Destroying" />

 </VocabularyElement>

 </VocabularyElementList>

 </Vocabulary>

 <Vocabulary type="urn:epcglobal:epcis:vtype:Disposition">

 <VocabularyElementList>

 <VocabularyElement id="urn:epcglobal:fmcg:disp:active">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Active" />

 </VocabularyElement>

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 74/80

 <VocabularyElement id="urn:epcglobal:fmcg:disp:inactive">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Inactive" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:disp:reserved">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Reserved" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:disp:encoded">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Encoded" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:disp:in_transit">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="In_transit" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:disp:non_sellable">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Non_sellable" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:disp:in_progress">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="In_progress" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:disp:sold">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Sold" />

 </VocabularyElement>

 </VocabularyElementList>

 </Vocabulary>

 <Vocabulary type="urn:epcglobal:epcis:vtype:BusinessTransactionType">

 <VocabularyElementList>

 <VocabularyElement id="urn:epcglobal:fmcg:btt:shipping">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Shipping" />

 </VocabularyElement>

 <VocabularyElement id="urn:epcglobal:fmcg:btt:receiving">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Receiving" />

 </VocabularyElement>

 </VocabularyElementList>

 </Vocabulary>

 </VocabularyList>

 </EPCISBody>

 </epcismd:EPCISMasterDataDocument>

 <!--

 Open Loop Composite Business Process (AspireRFID Process Description

 Language Specification)

 -->

 <apdl:CLCBProc id="urn:epcglobal:fmcg:bti:acmesupplying" name="AcmeWarehouseBusinessProcess">

 <!--

 RFID Composite Business Process Specification (the ID will be the

 Described Transactions's URI)

 -->

 <xpdl:Description>Acme Supply Chain</xpdl:Description>

 <epcismd:EPCISMasterDataDocument>

 <EPCISBody>

 <VocabularyList>

 <Vocabulary type="urn:epcglobal:epcis:vtype:BusinessLocation">

 <VocabularyElementList>

 <VocabularyElement id="urn:epcglobal:fmcg:loc:greece:pireus:mainacme">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Acme" />

 <attribute id="urn:epcglobal:epcis:mda:Address" value="Akadimias 3" />

 <attribute id="urn:epcglobal:epcis:mda:City" value="Pireus" />

 <attribute id="urn:epcglobal:epcis:mda:Country" value="Greece" />

 </VocabularyElement>

 <VocabularyElement

id="urn:epcglobal:fmcg:loc:greece:pireus:mainacme,urn:epcglobal:fmcg:loc:acme:warehouse1">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="AcmeWarehouse1" />

 <attribute id="urn:epcglobal:epcis:mda:Read Point"

 value="urn:epcglobal:fmcg:loc:rp:45632.Warehouse1DocDoor" />

 </VocabularyElement>

 <VocabularyElement

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 75/80

id="urn:epcglobal:fmcg:loc:greece:pireus:mainacme,urn:epcglobal:fmcg:loc:acme:warehouse2">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="AcmeWarehouse2" />

 <attribute id="urn:epcglobal:epcis:mda:Read Point"

 value="urn:epcglobal:fmcg:loc:rp:06141.Warehouse2DocDoor" />

 </VocabularyElement>

 <VocabularyElement

id="urn:epcglobal:fmcg:loc:greece:pireus:mainacme,urn:epcglobal:fmcg:loc:acme:warehouse3">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="AcmeWarehouse3" />

 <attribute id="urn:epcglobal:epcis:mda:Read Point"

 value="urn:epcglobal:fmcg:loc:rp:56712.Warehouse3Docdoor" />

 </VocabularyElement>

 </VocabularyElementList>

 </Vocabulary>

 <Vocabulary type="urn:epcglobal:epcis:vtype:ReadPoint">

 <VocabularyElementList>

 <VocabularyElement

 id="urn:epcglobal:fmcg:loc:rp:45632.Warehouse1DocDoor">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Warehouse1DocDoor" />

 </VocabularyElement>

 <VocabularyElement

 id="urn:epcglobal:fmcg:loc:rp:06141.Warehouse2DocDoor">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Warehouse2DocDoor" />

 </VocabularyElement>

 <VocabularyElement

 id="urn:epcglobal:fmcg:loc:rp:56712.Warehouse3Docdoor">

 <attribute id="urn:epcglobal:epcis:mda:Name" value="Warehouse3DocDoor" />

 </VocabularyElement>

 </VocabularyElementList>

 </Vocabulary>

 </VocabularyList>

 </EPCISBody>

 </epcismd:EPCISMasterDataDocument>

 <apdl:EBProc id="urn:epcglobal:fmcg:bte:acmewarehouse1receive"

 name="Warehouse1DocDoorReceive">

 <!--

 Elementary RFID Business Process Specification (the ID will be the

 Described Event's URI)

 -->

 <xpdl:Description>Acme Warehouse 3 Receiving ReadPoint5 Gate3

 </xpdl:Description>

 <xpdl:TransitionRestrictions>

 <xpdl:TransitionRestriction>

 <xpdl:Join Type="AND" />

 </xpdl:TransitionRestriction>

 </xpdl:TransitionRestrictions>

 <xpdl:ExtendedAttributes>

 <xpdl:ExtendedAttribute Name="XOffset" Value="204" />

 <xpdl:ExtendedAttribute Name="YOffset" Value="204" />

 <xpdl:ExtendedAttribute Name="CellHeight" Value="30" />

 <xpdl:ExtendedAttribute Name="CellWidth" Value="313" />

 <xpdl:ExtendedAttribute Name="ECSpecSubscriptionURI"

 Value="http://localhost:9999" />

 <xpdl:ExtendedAttribute Name="AleClientEndPoint"

 Value="http://localhost:8080/aspireRfidALE/services/ALEService" />

 <xpdl:ExtendedAttribute Name="AleLrClientEndPoint"

 Value="http://localhost:8080/aspireRfidALE/services/ALELRService" />

 <xpdl:ExtendedAttribute Name="EpcisClientCaptureEndPoint"

 Value="http://localhost:8080/aspireRfidEpcisRepository/capture" />

 <xpdl:ExtendedAttribute Name="EpcisClientQueryEndPoint"

 Value="http://localhost:8080/aspireRfidEpcisRepository/query" />

 <xpdl:ExtendedAttribute Name="BegEngineEndpoint"

 Value="http://localhost:8080/aspireRfidBEG/begengine" />

 <!-- The DefinedECSpecName can be collected from the EBProc id-->

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 76/80

 <!--

 For the BEG configuration the port can be collected from the

 "ECSpecSubscriptionURI" value and the event to serve from the EBPSpec

 id

 -->

 </xpdl:ExtendedAttributes>

 <apdl:DataFields>

 <apdl:DataField type="EPCISMasterDataDocument" name="RecievingMasterData">

 <epcismd:EPCISMasterDataDocument>

 <EPCISBody>

 <VocabularyList>

 <Vocabulary type="urn:epcglobal:epcis:vtype:BusinessTransaction">

 <VocabularyElementList>

 <VocabularyElement

 id="urn:epcglobal:fmcg:bte:acmewarehouse1receive">

 <attribute id="urn:epcglobal:epcis:mda:event_name"

 value="Warehouse1DocDoorReceive" />

 <!--

 For the required ECReportID we will use the EBPSpec id

 and the information for which kind of reports BEG will

 use the event type will provide them.

 -->

 <attribute id="urn:epcglobal:epcis:mda:event_type"

 value="ObjectEvent" />

 <attribute id="urn:epcglobal:epcis:mda:business_step"

 value="urn:epcglobal:fmcg:bizstep:receiving" />

 <attribute id="urn:epcglobal:epcis:mda:business_location"

 value="urn:epcglobal:fmcg:loc:acme:warehouse1" />

 <attribute id="urn:epcglobal:epcis:mda:disposition"

 value="urn:epcglobal:fmcg:disp:in_progress" />

 <attribute id="urn:epcglobal:epcis:mda:read_point"

 value="urn:epcglobal:fmcg:loc:45632.Warehouse1DocDoor" />

 <attribute id="urn:epcglobal:epcis:mda:transaction_type"

 value="urn:epcglobal:fmcg:btt:receiving" />

 <attribute id="urn:epcglobal:epcis:mda:action"

 value="ADD" />

 </VocabularyElement>

 </VocabularyElementList>

 </Vocabulary>

 </VocabularyList>

 </EPCISBody>

 </epcismd:EPCISMasterDataDocument>

 </apdl:DataField>

 <apdl:DataField type="ECSpec" name="RecievingECSpec">

 <ale:ECSpec includeSpecInReports="false">

 <logicalReaders>

 <logicalReader>SmartLabImpinjSpeedwayLogicalReader

 </logicalReader>

 </logicalReaders>

 <boundarySpec>

 <repeatPeriod unit="MS">5500</repeatPeriod>

 <duration unit="MS">5500</duration>

 <stableSetInterval unit="MS">0</stableSetInterval>

 </boundarySpec>

 <reportSpecs>

 <!--For the required ECReportID we will use the EBPSpec id

-->

 <reportSpec reportOnlyOnChange="false" reportName="bizTransactionIDs"

 reportIfEmpty="true">

 <reportSet set="CURRENT" />

 <filterSpec>

 <includePatterns>

 <includePattern>urn:epc:pat:gid-96:145.12.*</includePattern>

 <includePattern>urn:epc:pat:gid-96:239.30.*</includePattern>

 </includePatterns>

 <excludePatterns />

 </filterSpec>

 <groupSpec />

 <output includeTag="true" includeRawHex="true"

 includeRawDecimal="true" includeEPC="true" includeCount="true" />

 </reportSpec>

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 77/80

 <!--For the required ECReportID we will use the EBPSpec id

-->

 <reportSpec reportOnlyOnChange="false" reportName="transactionItems"

 reportIfEmpty="true">

 <reportSet set="ADDITIONS" />

 <filterSpec>

 <includePatterns>

 <includePattern>urn:epc:pat:gid-96:145.233.*

 </includePattern>

 <includePattern>urn:epc:pat:gid-96:145.255.*

 </includePattern>

 <includePattern>urn:epc:pat:gid-96:1.4.*</includePattern>

 <includePattern>urn:epc:pat:gid-96:1.3.*</includePattern>

 </includePatterns>

 <excludePatterns />

 </filterSpec>

 <groupSpec />

 <output includeTag="true" includeRawHex="true"

 includeRawDecimal="true" includeEPC="true" includeCount="true" />

 </reportSpec>

 </reportSpecs>

 <extension />

 </ale:ECSpec>

 </apdl:DataField>

 <!--

 We could have many LRSpecs defining many Logical Readers for one

 EBProc

 -->

 <apdl:DataField type="LRSpec"

 name="SmartLabImpinjSpeedwayLogicalReader">

 <alelr:LRSpec>

 <isComposite>false</isComposite>

 <readers />

 <properties>

 <property>

 <name>Description</name>

 <value>This Logical Reader consists of read point 1,2,3</value>

 </property>

 <property>

 <name>ConnectionPointAddress</name>

 <value>192.168.212.238</value>

 </property>

 <property>

 <name>ConnectionPointPort</name>

 <value>5084</value>

 </property>

 <property>

 <name>ReadTimeInterval</name>

 <value>4000</value>

 </property>

 <property>

 <name>PhysicalReaderSource</name>

 <value>1,2,3</value>

 </property>

 <property>

 <name>RoSpecID</name>

 <value>1</value>

 </property>

 <property>

 <name>ReaderType</name>

 <value>org.ow2.aspirerfid.ale.server.readers.llrp.LLRPAdaptor

 </value>

 </property>

 </properties>

 </alelr:LRSpec>

 </apdl:DataField>

 </apdl:DataFields>

 </apdl:EBProc>

 <xpdl:Transitions>

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 78/80

 <xpdl:Transition Id="Start_Warehouse3RecievingGate3" Name="Start_Warehouse3RecievingGate3"

 From="CLCBProcStart" To="urn:epcglobal:fmcg:bte:acmewarehouse3ship" />

 <xpdl:Transition Id="Warehouse3RecievingGate3_End" Name="Warehouse3RecievingGate3_End"

 From="urn:epcglobal:fmcg:bte:acmewarehouse3ship" To="CLCBProcEnd" />

 </xpdl:Transitions>

 </apdl:CLCBProc>

</apdl:OLCBProc>

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 79/80

Appendix III Soap Interfaces

PE “olcbproccontrol” Soap Interface

@WebService(name = "ProgramEngOLCBProcControlInterface", targetNamespace =

"http://olcbproccontrol.programmableengine.aspirerfid.ow2.org/")

public interface ProgrammEngineOLCBProcControlInterface {

 @WebMethod()

 @WebResult(name = "registerStatus")

 public HashMap<String, String> register(@WebParam(name = "openLoopCBProc") OLCBProc openLoopCBProc)

 throws OLCBProcValidationException, NotCompletedExecutionException;

 @WebMethod()

 @WebResult(name = "unregisterStatus")

 public HashMap<String, String> unregister(@WebParam(name = "openLoopCBProc") OLCBProc

openLoopCBProc)

 throws NoSuchOLCBProcIdException;

 @WebMethod()

 @WebResult(name = "updateStatus")

 public HashMap<String, String> update(@WebParam(name = "openLoopCBProc") OLCBProc openLoopCBProc)

 throws OLCBProcValidationException, NotCompletedExecutionException;

 @WebMethod()

 @WebResult(name = "startStatus")

 public HashMap<String, String> start(@WebParam(name = "openLoopCBProc") OLCBProc openLoopCBProc)

 throws NoSuchOLCBProcIdException;

 @WebMethod()

 @WebResult(name = "stopStatus")

 public HashMap<String, String> stop(@WebParam(name = "openLoopCBProc") OLCBProc openLoopCBProc)

 throws NoSuchOLCBProcIdException;

 @WebMethod()

 @WebResult(name = "OLCBProc")

 public OLCBProc getOLCBProc(@WebParam(name = "openLoopCBProcID") String openLoopCBProcID,

 @WebParam(name = "endPoints") HashMap<String, String> endPoints)

 throws NoSuchOLCBProcIdException;

}

PE “clcbproccontrol” Soap Interface

@WebService(name = "ProgrammEngineCLCBProcControlInterface", targetNamespace =

"http://clcbproccontrol.programmableengine.aspirerfid.ow2.org/")

public interface ProgrammEngineCLCBProcControlInterface {

 @WebMethod()

 @WebResult(name = "registerStatus")

 public HashMap<String, String> register(@WebParam(name = "closeLoopCBProc") CLCBProc

closeLoopCBProc)

 throws CLCBProcValidationException, NotCompletedExecutionException;

 @WebMethod()

 @WebResult(name = "unregisterStatus")

 public HashMap<String, String> unregister(@WebParam(name = "closeLoopCBProc") CLCBProc

closeLoopCBProc)

 throws NoSuchCLCBProcIdException;

 @WebMethod()

 @WebResult(name = "updateStatus")

 public HashMap<String, String> update(@WebParam(name = "closeLoopCBProc") CLCBProc closeLoopCBProc)

Contract: 215417

Deliverable report – WP4 / D4.2b

ID: Aspire-D4.2b_final.doc Date: 3 May 2011
Revision: 1.3 Security: Public
 Page 80/80

 throws CLCBProcValidationException, NotCompletedExecutionException;

 @WebMethod()

 @WebResult(name = "startStatus")

 public HashMap<String, String> start(@WebParam(name = "closeLoopCBProc") CLCBProc closeLoopCBProc)

 throws NoSuchCLCBProcIdException;

 @WebMethod()

 @WebResult(name = "stopStatus")

 public HashMap<String, String> stop(@WebParam(name = "closeLoopCBProc") CLCBProc closeLoopCBProc)

 throws NoSuchCLCBProcIdException;

 @WebMethod()

 @WebResult(name = "CLCBProc")

 public CLCBProc getCLCBProc(@WebParam(name = "closeLoopCBProcID") String closeLoopCBProcID,

 @WebParam(name = "endPoints") HashMap<String, String> endPoints)

 throws NoSuchCLCBProcIdException;

}

PE “ebproccontrol” Soap Interface

@WebService(name = "ProgrammEngineEBProcControlInterface", targetNamespace =

"http://ebproccontrol.programmableengine.aspirerfid.ow2.org/")

public interface ProgrammEngineEBProcControlInterface {

 @WebMethod()

 @WebResult(name = "registerStatus")

 public HashMap<String, String> register(@WebParam(name = "elementaryBProc") EBProc elementaryBProc)

 throws EBProcValidationException, NotCompletedExecutionException;

 @WebMethod()

 @WebResult(name = "unregisterStatus")

 public HashMap<String, String> unregister(@WebParam(name = "elementaryBProc") EBProc

elementaryBProc)

 throws NoSuchEBProcIdException;

 @WebMethod()

 @WebResult(name = "updateStatus")

 public HashMap<String, String> update(@WebParam(name = "elementaryBProc") EBProc elementaryBProc)

 throws EBProcValidationException, NotCompletedExecutionException;

 @WebMethod()

 @WebResult(name = "startStatus")

 public HashMap<String, String> start(@WebParam(name = "elementaryBProc") EBProc elementaryBProc)

 throws NoSuchEBProcIdException;

 @WebMethod()

 @WebResult(name = "stopStatus")

 public HashMap<String, String> stop(@WebParam(name = "elementaryBProc") EBProc elementaryBProc)

 throws NoSuchEBProcIdException;

 @WebMethod()

 @WebResult(name = "EBProc")

 public EBProc getEBProc(@WebParam(name = "elementaryBProcID") String elementaryBProcID,

 @WebParam(name = "endPoints") HashMap<String, String> endPoints)

 throws NoSuchEBProcIdException;

}

