
ASPIRE FP7 215417

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the ASPIRE Consortium. Neither

this document nor the information contained herein shall be used, duplicated or
communicated by any means to any third party, in whole or in parts, except with prior written

consent of the ASPIRE consortium.

Collaborative Project

ASPIRE

Advanced Sensors and lightweight Programmable
middleware for Innovative Rfid Enterprise applications

FP7 Contract: ICT-215417-CP

WP4 – RFID Middleware programmability

Public report - Deliverable

Programmable Filters – FML
Specification (Interim Version)

Due date of deliverable: M15
Actual Submission date:

Deliverable ID: WP4/D4.3a
Deliverable Title: Programmable Filters – FML Specification (Interim

Version)
Responsible partner: AAU

Contributors:

John Soldatos (AIT)
Nikos Kefalakis (AIT)
Nektarios Leontiadis (AIT)
Lo¨c Schmidt, Nathalie Mitton (INRIA)

Estimated Indicative
Person Months: 14

Start Date of the Project: 1 January 2008 Duration: 36 Months

Revision: 0.1
Dissemination Level: PU

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 2/46

Document Information

Document Name: Programmable Filters – FML Specification (Interim Version)
Document ID: WP4/D4.3a
Revision: 0.1
Revision Date: 06 March 2009
Author: AAU
Security: PU

Approvals

 Name Organization Date Visa

Coordinator Neeli Rashmi Prasad CTIF-AAU

Technical
Coordinator John Soldatos AIT

Quality Manager Anne Bisgaard Pors CTIF-AAU

Reviewers

Name Organization Date Comments Visa
Nathalie Mitton INRIA

Document history

Revision Date Modification Authors
0.1 20 Mar 09 First draft Nikos Kefalakis

0.2 23 Mar 09 Edited Programmable Filters
Specification (creating business logic) Nikos Kefalakis

0.3 24 Mar 09 Augmented Executive Summary and
Introduction Ramiro Samano Robles

0.4 26 Mar 09 Added Available Tools and the Complete
Example Nikos Kefalakis

0.5 01 Apr 09 Conclusion, augmented Introduction Nektarios Leontiadis, John Soldatos

0.6 14 Apr 09 Section 3,Section 4, augmented Section
2 Nikos Kefalakis, John Soldatos

0.7 15 Apr 09 Added Section 10 Loïc Schmidt, Nathalie Mitton

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 3/46

0.8 29 Apr 09 Minor Corrections Nikos Kefalakis

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 4/46

Content

Section 1 Executive Summary .. 5
Section 2 Introduction ... 6
Section 3 Concept of Reusable filters ... 9
Section 4 Notion of Programmable Filters in the ASPIRE Architecture 11
Section 5 Business Event Generation: Connecting F&C and Information Services
modules through Business Filters ... 13
Section 6 Programmable Filters Specification (the different components) 14

6.1 Overview .. 14
6.2 Filtering and Collection module .. 14

6.2.1 Role .. 14
6.2.2 ECSpecs ... 14

6.2.2.1 ECReportSpec .. 14

6.3 Information Services module .. 15
6.3.1 Event Data .. 15

6.3.1.1 EPCIS Event ... 15
6.3.1.2 Aggregation Event .. 15
6.3.1.3 Object Event ... 16
6.3.1.4 Quantity Event .. 17
6.3.1.5 Transaction Event ... 18

6.3.2 Actions Types ... 18
6.3.3 Master Data .. 19

6.3.3.1 Master Data Types .. 19
6.3.3.1.1 BusinessTransaction ... 19

6.4 Business Event Generation module ... 20
6.4.1 Role .. 20
6.4.2 Functionality .. 20

Section 7 Programmable Filters Specification (creating business logic) 22
7.1 Overview .. 22
7.2 Combining ECSpecs & BizTransaction Attr to create Event Data 22

7.2.1 Creating an Aggregation Event ... 23
7.2.1.1 Setting up the ECSpec .. 23
7.2.1.2 Processing the ECReport ... 25

7.2.2 Creating an Object Event .. 25
7.2.2.1 Setting up the ECSpec .. 25
7.2.2.2 Processing the ECReport ... 26

7.2.3 Creating a Quantity Event ... 26
7.2.3.1 Setting up the ECSpec .. 27
7.2.3.2 Processing the ECReport ... 27

7.2.4 Creating an Transaction Event ... 28
7.2.4.1 Setting up the ECSpec .. 28

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 5/46

7.2.4.2 Processing the ECReport ... 29

Section 8 Available Tools for Defining Business Filters ... 30
8.1 Overview .. 30
8.2 ECSpec Editor ... 30
8.3 Master Data Editor .. 31

Section 9 A complete example using Programmable filters ... 33
9.1 Describing the Problem ... 33
9.2 Solution Requirements .. 33
9.3 Setting up the Filtering and collection Module .. 33
9.4 Setting up the Information Services Module .. 36
9.5 Setting up the Business event generation module ... 37
9.6 Process description ... 37

Section 10 Filter using Distributed Hash Table (investigations) 39
Section 11 Conclusions .. 41
Section 12 List of Figures ... 43
Section 13 List of Tables ... 44
Section 14 References and Bibliography .. 45

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 6/46

Section 1 Executive Summary

This deliverable provides the specification of two of the main characteristics and
contributions of the ASPIRE middleware platform: the programmable filters and
their associated filtering markup language (FML). The filtering functionality within
an RFID (Radio Frequency Identification) system plays an important role in the
architecture since it is used to select and refine the raw tag data collected by the
interrogator(s) which contains relevant information to upper layer applications
while rejecting those unwanted or noisy data. The filtering and collection (F&C)
module is, therefore, an important interface between the RFID interrogator or
reader and the business world.

Parts of this deliverable provide explicit examples on how to use the widely
accepted extensible markup language concept (XML), which is borrowed from the
Internet literature, in order to illustrate how to program filters with business
meaning in the context of the ASPIRE RFID middleware platform. By using such a
flexible and high-level markup language approach, the envisioned filters can
easily cope with business events as well as being easy to understand both for
software integrators and for the engine that interprets its semantics.
Furthermore, the filters can be easily reused for other applications, thus
providing the ASPIRE platform with a great deal of programmability and
modularity. Future integrators can make use of existing filters and templates in
order to generate improved or application specific filtering functionalities.

We recall here that ASPIRE is developing an innovative royalty free middleware
platform. This middleware platform is a primary target of the open source
software (OSS) “AspireRFID” project, which has been successfully established in
the scope of the OW2 community (http://wiki.aspire.ow2.org/). The
programmable nature of the “AspireRFID” project asks for versatility and
reusability in terms of the filtering that will be supported. Such a reusability and
programmability concept is fully exploited by the proposed filtering markup
language, which is easy to understand for anyone with a basic training on
markup languages for Internet applications.

At the end of this deliverable the reader will be able to understand the semantics
and philosophy of the filtering markup language and to relate them to the main
components of the ASPIRE architecture, namely the Application Level Event
generator (ALE), the Business Event Generator (BEG) and the Information
Sharing Repository (EPCIS). Details are given later in this document, while the
definition of the ASPIRE architecture for reference purposes can be found in
previous documents of the project such as in D2.3b. Also note that this
document is the interim version of the deliverable, thus being the preamble to
the final version of the specifications to be released by month 24 (M24) of the
project.

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 7/46

Section 2 Introduction

RFID middleware is gradually becoming a cornerstone for non-trivial RFID
deployments. This is particularly true in the scope of complex heterogeneous
environments comprising multiple readers, application instances, legacy IT
(Information technology) systems, as well as sophisticated business processes
and semantics. In these environments (e.g., in factories, warehouses, and
distribution centers) many distributed readers and antennas capture RFID data,
which must be conveyed to a variety of applications (such enterprise resource
planning (ERP) systems, warehouse management systems (WMS), corporate
databases, process management systems). In such settings, middleware
platforms are indispensable for three main reasons:

1. The need to filter out duplicated reads and excess information in order to
avoid pushing information that is not needed to the upstream applications, while
at the same time optimizing network resources.

2. The need to interface and deal with readers, tags and devices in a
heterogeneous multi-vendor environment without resorting to custom integration
logic.

3. The need to pass and route RFID data streams to different applications
and databases.

Filtering has therefore a prominent position in the RFID middleware blocks.
Legacy middleware products concentrate on
• Low-level filtering (Tags, Tag Data)
• Aggregation of readings
• Provision of basic low-level application events

ASPIRE introduces a new approach to RFID middleware through a two-tier
filtering:

• Conventional filtering (e.g., EPC-ALE paradigm)

o Open Source Tools (Stored/Save, Edit, Delete Filters) compliant to
ALE specifications

• Filtering of business events (i.e. based on the paradigm of BEG module)
o Combination of filtered data with business metadata according to

declared/configured processes

o Specifications for mapping sensor reading events into business
events

• Filtering of many types of sensors other than RFID, like ZigBee (IEEE 802.15)

and HF sensors.

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 8/46

At the time of writing the DoW (Description of Work), low-level filtering functions
had not been standardized. Hence we extended the scope of programmable
filters to business events with the Business Event Generator (BEG) enabling
programmable translation of basic filtered application events to high level.
Despite this, low level filtering functionalities, which will release the middleware
platform from some of its filtering functionalities and tag traffic to be processed,
have started to be investigated in the ASPIRE project (see deliverables within
workpackage 3, e.g. D3.3)

The filtering functionality in and RFID platform is not only used to get rid of extra
information that is not relevant for upper layers, but it represents the connection
between the low level RFID world, and the business and application level
semantics, therefore being a critical point for middleware integrators and
developers. To provide a clear consensus for open source contributors around
this important interface, a straightforward solution is to use a high level
programming language oriented to describe business semantics and to isolate
them from the low level details of RFID platforms. Among such languages, one
that has received special interest due to its flexibility and great acceptance
between Internet and application developers is the extensible markup language
(XML). As the name suggests, by using a set of markups, the language is able to
be adapted to a variety of purposes, including the filtering functionality of an
RFID system as described in this document. The filter markup language proposed
by ASPIRE not only helps in the programmability of the tool but it also provides
modularity and the possibility of reusing filtering rules. In this way future
developers can start building up new and interesting filtering policies from
previously tested and mature solutions.

This deliverable is dedicated to the specification and description of the filtering
markup language, its semantics, the type of reusable filters that arise from its
specification, the components of the ASPIRE architecture that are involved on the
defined filtering functionalities, and useful usage examples that help the
integrator to understand the operation and structure of the language format and
the functionalities addressed in the filtering definition. Also note that this
document is the interim version of the deliverable, thus being the preamble to
the final version of the specifications to be released by month 24 (M24) of the
project.

The present document is the report, whereas the implementation can be found at
the ASPIRE’s Wiki and Forge Pages. The executable final version of the
implementation can be found at the AspireRFID forge page
(http://forge.ow2.org/project/showfiles.php?group_id=324), the source code of
the implementation can be found at the AspireRFID SVN
(http://forge.ow2.org/plugins/scmsvn/index.php?group_id=324). Directions on
how to use the AspireRFID Information Sharing repository, Business Event
Generation and F&C module can be found at the AspireRFID Wiki documentation
page (http://wiki.aspire.ow2.org/xwiki/bin/view/Main/Documentation).

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 9/46

The rest of this deliverable is structured as follows:
• Section 3 discusses the role of the programmable filters and their impact in

the Aspire middleware architecture.
• Section 4 discusses the concept and the operation of the programmable filters

from a high level of design perspective.
• Section 5 reviews the role of the Business Event Generator between the low

level event generator and the high level Information Systems
• Section 6 dives deep into the Programmable Filters Specification presenting

the three distinct components that assemble it.
• Section 7 discusses how these three components are combined to produce

business information that can be utilized by the high level Information
Systems.

• Section 8 explores the tools that have been built in the scope of Aspire to
implement the components of the Programmable Filters Specification

• Section 9 provides a complete example that demonstrates the use of the
aforementioned tools

• Section 10 gives an overview of low level filtering (filtering deported to the
reader device) which will be completed in Deliverable 4.3b and

• Section 11 draws a conclusion on the matters raised in this deliverable.

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 10/46

Section 3 Concept of Reusable filters

It is relatively straightforward for a trained person or an expert RFID
programmer to develop a new or adapt an existing RFID middleware platform
according to specific requirements and with the support of specific functions.
However, having such expert RFID developer available for expanding the system
and adding new functions/features is difficult and expensive, particularly for
small and medium enterprises (SMEs).

A possible solution for a problem like the one described above is the concept of
reusable filters. By setting specific filters for the RFID middleware using XML
language and by using a suitable “engine” which would be able to interpret XML
semantics, one would be able to describe to that “engine” the requirements and
processes of an RFID infrastructure without the need of an RFID developer
expert and to set it up to serve the specific company without much effort.

The above solution concept derives from the ability to break off into distinct
business transactions a company’s business processes which at its turn can be
break up in distinct Transaction Events as shown in Figure 1 below.

Figure 1 Wider Business Process/Transactions Example

The fact is that it is important to break each use case into a series of discrete
business steps corresponding to various business events so as to be able to
reuse each one of them to describe a different scenario.

Fixed lists of identifiers with standardized meanings for concepts like business
step and disposition must be defined, along with rules for population of user-
created identifiers like read point, business location, business transaction and
business transaction type. All these information elements will be stored and
managed as pieces of Master Data, within an appropriate database schema.

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 11/46

Figure 2 depicts the concept of decomposing a process into a number of business
events. The latter events comply to the ASPIRE Information Sharing
specifications for RFID events (with direct references to EPC-IS framework). We
call Elementary Business Process, the process which can be directly decomposed
into RFID business events (as shown in Figure 2).

Object
Event

Aggregation
Event

Transaction
Start

Transaction
Finish

Object
Event

Aggregation
Event

Transaction
Observed

Order Collection

Elementary RFID enabled
Business Process

 Business Events

Figure 2 Description of Elementary RFID enabled Business Process

These “Business Events” are stored at the Business’s Master Data which except
the business step, disposition, read point, business location, business transaction
and business transaction type. It should also define the required input needed
from the underlying Filtering and collection layer so as to create the current RFID
events.

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 12/46

Section 4 Notion of Programmable Filters in the ASPIRE Architecture

Because ASPIRE is designed in such a way that it will be expandable,
configurable and modular, the use of Programmable filters is necessary.
Moreover ASPIRE IDE will include a programmability engine, which will be an
integral component of the AspireRFID IDE. This engine will be able to process a
fully fledged RFID solution described in a special purpose domain specific
language which will be specified as part of future deliverables of the WP4 of the
ASPIRE project.

The core “engine” described in Section 3 above for the AspireRFID middleware is
comprised from three different components:

• The filtering and Collection module, which is responsible of the low level
filtering.

• The Business Event Generator module, which is responsible for the High
Level filtering providing Buisness context to the captured events.

• And the Information sharing repository, which is the repository which
stores a company’s Master Data and Business functions.

Figure 3 demonstrates a complete Aspire programmable filter solution with
ASPIRE’s existing tools. With the help of Master Data editor we can “describe”
the company’s business data, processes and the required Low Level input to
create business events. All these are stored to the Information Sharing
repository which is used from the Business Event Generator on demand to
configure its behavior on creating the business events. With the help of ECSpec
editor we can create the required ECSpecs that configure the Filtering and
Collections layer behavior by using the ECSpec configurator. The Filtering and
Collection module after being configured as required collects the raw readings
from the attached RFID readers to it and produces the filtered ECReports which
are feed to the Business Event Generator. A complete detailed example is
described in Section 9.

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 13/46

Figure 3 Complete Programmable Filters ASPIRE solution

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 14/46

Section 5 Business Event Generation: Connecting F&C and Information

Services modules through Business Filters

The Information Services module specification defines a data language for
representing visibility information, namely events having four dimensions of
“what”, “when”, “where” and “why”.

Primarily the Filtering and Collection module answers ‘What’, ‘Where’ and ‘When’.
Information Services module adds the ‘Why’ (i.e., the business context). For
example, the ‘Where’ in Filtering and Collection module usually a logical reader
name. It is converted into a business location in the Information Services
module.

Further, the Filtering and Collection module interface is exclusively oriented
towards real-time processing of Information Services data, with no persistent
storage of these data required by the interface. Business applications (e.g. ERP,
WMS…) that manipulate Information Services module data, in contrast, typically
deal explicitly with historical data and hence are inherently persistent in nature.

Architecturally, the Filtering and Collection layer is concerned with dealing with
the mechanics of data gathering, and of filtering down to meaningful events that
are a suitable starting point for interpretation by business logic. Business layers,
where Information Services module comes into play, are concerned with business
process and recording events that can serve as the basis for a wide variety of
enterprise-level information processing tasks.

Visibility information at the Information Services module level is often used to
record what took place in an operational business process that involves the
handling of physical assets, such as the receipt of goods through an entry door of
a warehouse. The module responsible for supervising such a process and
generating Information Services data is the Business Event Generation module.

The “glue” for the two modules described above, the information Service and the
Filtering and collection modules, and the one that collects the produced F&C data
and adds the “why” notion is the Business Event Generator module. To the
extent that the Business Event Generation module interacts with EPC data and/or
RFID tags in the course of carrying out its function, it uses ALE as the way to
read those EPC data and/or RFID tags and the Information Sharing to store these
“events”.

In most of the cases the Business Event Generation module is also responsible
for a complex orchestration of RFID devices, material handling equipment, and
human tasks that are involved in carrying out a business process. That is why
Filtering and Collection is used specifically to interact with the RFID devices, and
is therefore a smaller part of the whole. [4]

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 15/46

Section 6 Programmable Filters Specification (the different components)

6.1 Overview

To create programmable filters that contain a complete business logic throughout
the ASPIRE’s middleware we need to combine three different specifications
together. These specifications apply to three different modules of the ASPIRE
middleware architecture which are:

• the Filtering and collection module,
• the Business Event generation module and
• the Information Services repository module.

So to analyze the combination of the specifications of those three modules we
need first to analyze the components that are used from each one separately.

Note that in this section we are going to define the specifications for only the
required parts from the all ASPIRE’s architecture.

6.2 Filtering and Collection module

6.2.1 Role

Carries out processing to reduce the volume of EPC data, transforming raw tag
reads into streams of events more suitable for application logic than raw tag
reads.

6.2.2 ECSpecs

An ECSpec is a complex type that describes an event cycle and one or more
reports that are to be generated from it. Current tags or tags that have been
added or deleted can be retrieved with respect to the last event cycle or
combinations of all. [3]

An ECSpec Contains:

• An unordered list of Logical Readers called “logicalReaders” whose reader
cycles are to be included in the event cycle and are used to acquire tags.

• A specification of how the boundaries of event cycles are to be determined
called “boundarySpec”. In brief, it specifies the starting and stopping
conditions for event cycles.

• An unordered list of Report Specifications, each describing a report to be
generated from this event cycle and to be included in the output from each
event cycle called “reportSpecs”.

For defining filters the most important part of an ECSpec is the ECReportSpec.

6.2.2.1 ECReportSpec

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 16/46

An ECReportSpec specifies one report to be included in the list of reports that
results from executing an event cycle. An ECSpec contains a list of one or more
ECReportSpec instances. When an event cycle completes, an ECReports instance
is generated, unless suppressed. An ECReports instance contains one or more
ECReport instances, each corresponding to an ECReportSpec instance in the
ECSpec that governed the event cycle. The ECReportSetSpec is an enumerated
type denoting what set of Tags is to be considered for filtering and output: all
Tags read in the current event cycle, additions from the previous event cycle, or
deletions from the previous event cycle.

An ECReportSetSpec contains one or more ECFilterSpec which specifies the Tags
to be included in the final report. The ECFilterSpec implements a flexible filtering
scheme based on two pattern lists. Each list contains zero or more URI-formatted
EPC patterns. Each EPC pattern denotes a single EPC, a range of EPCs, or some
other set of EPCs.

An EPC is included in the final report if

a) the EPC does not match any pattern in the excludePatterns list, and
b) the EPC does match at least one pattern in the includePatterns list.

The (b) test is omitted if the includePatterns list is empty. [3]

6.3 Information Services module

6.3.1 Event Data

Event data arises in the course of carrying out business processes. Event data
grows in quantity as more business is transacted, and refers to things that
happen at specific moments in time.

6.3.1.1 EPCIS Event

An EPCISEvent is a generic base class for all event types which provides date
and time fields. Below is given the EPCISEvent’s XML schema. [2][6]

<xsd:complexType name="EPCISEventType" abstract="true">
 <xsd:sequence>
 <xsd:element name="eventTime" type="xsd:dateTime" />
 <xsd:element name="recordTime" type="xsd:dateTime"
minOccurs="0" />
…
 </xsd:sequence>
 <xsd:anyAttribute processContents=”lax” />
</xsd:complextype>

6.3.1.2 Aggregation Event

An AggregationEvent describes events related to objects that have been
physically aggregated. In such an event, there is a set of contained objects that

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 17/46

have been aggregated within a containing entity which identifies the physical
aggregation itself.

Because an AggregationEvent indicates aggregations among physical objects, the
children are identified by EPCs. However, the parent entity is identified by an
arbitrary URI (which may or may not be an EPC) because the parent is not
necessarily a physical object that is separate from the aggregation itself. Below is
given the AggregationEvent’s XML schema. [2][6]

<xsd:complexType name="AggregationEventType">
 <xsd:complexContent>
 <xsd:extension base="epcis:EPCISEventType">
 <xsd:sequence>

<xsd:element name="parentID"
type="epcis:ParentIDType"

 minOccurs="0" />
<xsd:element name="childEPCs"
type="epcis:EPCListType" />
<xsd:element name="action" type="epcis:ActionType"
/>
<xsd:element name="bizStep"
type="epcis:BusinessStepIDType"

 minOccurs="0" />
<xsd:element name="disposition"
type="epcis:DispositionIDType"

 minOccurs="0" />
<xsd:element name="readPoint"
type="epcis:ReadPointType"

 minOccurs="0" />
<xsd:element name="bizLocation"
type="epcis:BusinessLocationType"

 minOccurs="0" />
<xsd:element name="bizTransactionList"
type="epcis:BusinessTransactionListType"

 minOccurs="0" />
 …
 </xsd:sequence>
 <xsd:anyAttribute processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

6.3.1.3 Object Event

An ObjectEvent captures information about an event pertaining to one or more
physical objects identified by EPCs.

Logically, an ObjectEvent pertains to a single object identified by an EPC.
However, you can specify more than one EPC in an epcList when the remaining
ObjectEvent data applies to all the EPCs in the list.

In an ObjectEvent, no relationship among the EPCs is implied by their
appearance in the same ObjectEvent other than the coincidence of them all being

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 18/46

captured with identical information. By contrast, an AggregationEvent or
TransactionEvent conveys an implicit association among the EPCs in the event.
Below is given the ObjectEvent’s XML schema. [2][6]

<xsd:complexType name="ObjectEventType">
<xsd:complexContent>
 <xsd:extension base="epcis:EPCISEventType">
 <xsd:sequence>
 <xsd:element name="epcList" type="epcis:EPCListType" />
 <xsd:element name="action" type="epcis:ActionType" />
 <xsd:element name="bizStep"
 type="epcis:BusinessStepIDType"
 minOccurs="0" />

<xsd:element name="disposition"
type="epcis:DispositionIDType"

 minOccurs="0" />
 <xsd:element name="readPoint" type="epcis:ReadPointType"
 minOccurs="0" />

<xsd:element name="bizLocation"
type="epcis:BusinessLocationType"

 minOccurs="0" />
<xsd:element name="bizTransactionList"
type="epcis:BusinessTransactionListType"

 minOccurs="0" />
 …
 </xsd:sequence>
 <xsd:anyAttribute processContents="lax" />
 </xsd:extension>
</xsd:complexContent>
</xsd:complexType>

6.3.1.4 Quantity Event

A QuantityEvent is an event that happens to a specified number of objects all
having the same type, but where the individual instances are not identified.
Quantity Events can serve as a bridge between RFID systems and legacy
inventory systems that do not identify individual items. Below is given the
QuantityEvent’s XML schema. [2][6]

<xsd:complexType name="QuantityEventType">
 <xsd:complexContent>
 <xsd:extension base="epcis:EPCISEventType">
 <xsd:sequence>

<xsd:element name="epcClass"
type="epcis:EPCClassType" />

 <xsd:element name="quantity" type="xsd:int" />
 <xsd:element name="bizStep"
 type="epcis:BusinessStepIDType"
 minOccurs="0" />

<xsd:element name="disposition"
type="epcis:DispositionIDType"

 minOccurs="0" />
<xsd:element name="readPoint"
type="epcis:ReadPointType"

 minOccurs="0" />

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 19/46

<xsd:element name="bizLocation"
type="epcis:BusinessLocationType"

 minOccurs="0" />
<xsd:element minOccurs="0"
name="bizTransactionList"

 type="epcis:BusinessTransactionListType" />
 …
 </xsd:sequence>
 <xsd:anyAttribute processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

6.3.1.5 Transaction Event

A TransactionEvent describes the association or disassociation of physical objects to a
business transaction. While other event types have an optional bizTransactionList field that
can be used to provide context for an event, the TransactionEvent is used to declare in an
unequivocal way that certain EPCs have been associated or disassociated with one or more
business transactions as part of the event. Below is given the TransactionEvent’s XML
schema. [2][6]

<xsd:complexType name="TransactionEventType">
 <xsd:complexContent>
 <xsd:extension base="epcis:EPCISEventType">
 <xsd:sequence>

<xsd:element name="bizTransactionList"
type="epcis:BusinessTransactionListType" />
<xsd:element name="parentID"
type="epcis:ParentIDType"

 minOccurs="0" />
<xsd:element name="epcList"
type="epcis:EPCListType" />
<xsd:element name="action" type="epcis:ActionType"
/>
<xsd:element name="bizStep"
type="epcis:BusinessStepIDType"

 minOccurs="0" />
<xsd:element name="disposition"
type="epcis:DispositionIDType"

 minOccurs="0" />
<xsd:element name="readPoint"
type="epcis:ReadPointType"

 minOccurs="0" />
<xsd:element name="bizLocation"
type="epcis:BusinessLocationType"

 minOccurs="0" />
 …
 </xsd:sequence>
 <xsd:anyAttribute processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 20/46

6.3.2 Actions Types

The Action type says how an event relates to the lifecycle of the entity being
described. The Action type has three possible values:

• Add which means that the entity in question has been created or added
to.

• Observe which means that the entity in question has not been changed it
neither has been created, added to, destroyed, or removed from.

• Delete which means that the entity in question has been removed from or
destroyed altogether.

6.3.3 Master Data

Master data is additional data that provides the necessary context for
interpreting event data. It is available for filtering a query through the EPCIS
Query Interface, and available as part of a report through the Reporting Service.

Master data does not grow merely because more business is transacted. It is not
typically tied to specific moments in time and provides interpretation for
elements of event data.

Master data is business-context information that is associated with event data by
the Business Event Generation module reporting service and by the data
exchange service.

6.3.3.1 Master Data Types

A master data type is a definition for master data entries of that type. Each
master data type defines a set of attributes and their data types.

A master data entry is a concrete instance of a master data type. You can create
as many entries as you need of each master data type. Each entry has the same
set of attributes defined for its master data type, but where the master data type
defines the data type for each attribute an entry’s attributes contain the real
business-context information associated with a business’s operations. [2][6]

The available master data types are:

• bizLocation
• bizStep
• bizTransactionList
• bizTransaction which is comprised from the

o Business Transaction and
o Business Transaction Type

• disposition
• epcClass
• readPoint

The master data type that mostly concerns us to define the required
programmable filter is the “BusinessTransaction” type which is analyzed below.

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 21/46

6.3.3.1.1 BusinessTransaction

A BusinessTransaction identifies a particular business transaction. Transaction
information may be included in EPCIS events to record an event’s participation in
particular business transactions. [6]

A business transaction is described in Information Services module by a
structured type consisting of a pair of identifiers, as follows:

• BusinessTransactionTypeID
• BusinessTransactionID

BusinessTransactionID is a vocabulary whose elements denote specific business
transactions. In Table 1 below the BusinessTransactionID’s attributes are shown.
The attribute that are most significant to create an EPCIS event are:

• The “ECReportNames” one which stores a list of the incoming ECReport
names, to the Business Event Generator module, which concerns the
event to be created.

• The “EventType” which denotes the type of the event (Aggregation Event,
Object Event, Quantity Event or Transaction Event)

• And the “Action” which denotes how an event relates to the lifecycle of the
entity being described.

Attribute Name Attribute URI
ECReportNames urn:epcglobal:epcis:mda:ecreport_names
EventName urn:epcglobal:epcis:mda:event_name
EventType urn:epcglobal:epcis:mda:event_type
BusinessStep urn:epcglobal:epcis:mda:business_step
BusinessLocation urn:epcglobal:epcis:mda:business_location
Disposition urn:epcglobal:epcis:mda:disposition
ReadPoint urn:epcglobal:epcis:mda:read_point
TransactionType urn:epcglobal:epcis:mda:transaction_type
Action urn:epcglobal:epcis:mda:action

Table 1 Business Transaction ID Attributes

6.4 Business Event Generation module

The Business event generation module associates business-context information
(Master Data) with event data. The data is stored in the Information Services module
repository as Event Data and are mapping associated events with a company’s
master data.

6.4.1 Role

BEG module recognizes the occurrence of EPC-related business events, and
delivers these as EPCIS data. It may coordinate multiple sources of data in the

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 22/46

course of recognizing an individual EPCIS event. Sources of data include filtered,
collected EPC data obtained through the Filtering & Collection Interface.

6.4.2 Functionality

The business event generation module uses the data defined at the
BusinessTransaction’s Attributes to translate the received ECReports from the
Filtering and Collection module.

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 23/46

Section 7 Programmable Filters Specification (creating business logic)

7.1 Overview

The "glue” from the three modules described in Section 6 to create business logic
at the AspireRFID middleware is the Business Event Generation module, which uses
the predefined data provided from the two others to produce the required Event
Data.

7.2 Combining ECSpecs & BizTransaction Attr to create Event Data

To create Event Data, some event fields are required and some are optional Table
2 maps these associations. In addition, later on we are going to describe how we
should set up our middleware to get these event fields and create the desired
Event Data.

R = Required
O = Optional ObjectEvent AggregationEvent QuantityEvent TransactionEvent

Action R R R
bizLocation O O O O
bizStep O O O O
bizTransactionList O O O R
childEPCs R
Disposition O O O
epcClass R
epcList R R
eventTime R R R R
parented R O
Quantity R
readPoint O O O O

Table 2 Event fields with Event Types mapping [2]

The sequence for creating the various Business Events shown in Figure 4 at the
ASPIRE middleware is the following. The Filtering and Collection module receives
the raw readings from the Logical Readers attached to it. The F&C module in its
turn process the received readings taking in consideration the already predefined
ECSpecs and delivers the produced ECReport to the Business Event Generation
module. The Event Generation module receives the ECReport produced from the
F&C module and process them taking in consideration the BusinessTransaction
attributes data from the already predefined Master Data of the company. Finally
the Business Event Generation module sends to the Information Services module
Capturing interface the produced event data where they are stored in a
repository and are available for other applications, in our case the Connector
application, to query through its Query Interface.

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 24/46

Figure 4 Creating Event data Sequence

7.2.1 Creating an Aggregation Event

To create an Aggregation Event the Business Event Generation module should
receive an ECReport from the Filtering and Collection module comprised from
three reports named:

• “bizTransactionIDs_*”
• “transactionItems_*”
• And “parentObjects_*”

Where (*) the ID of each report should be placed, taking in consideration the list
of “ECReportNames” Attribute of the BusinessTransaction Master Data type.

7.2.1.1 Setting up the ECSpec

At the “bizTransactionIDs” report a filter should be set up in such a way that the
F&C module would report, every time they are captured, only patterns of the
included transaction ID Classes. An example of such a ReportSpec for the
“urn:epc:pat:gid-96:145.12.*” class is shown below.

<reportSpec reportOnlyOnChange="false" reportName="bizTransactionIDs_456"

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 25/46

 reportIfEmpty="true">
 <reportSet set="CURRENT" />
 <filterSpec>
 <includePatterns>
 <includePattern>

urn:epc:pat:gid-96:145.12.*
</includePattern>

 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

At the “transactionItems” report a filter should be set up in a way that the F&C
module would report, only the first time they are captured, only ID’s belonging in
the selected patterns of the included items Classes. An example of such a
ReportSpec for the “urn:epc:pat:gid-96:145.233.*” class is shown below.

<reportSpec reportOnlyOnChange="false" reportName="transactionItems_456"
 reportIfEmpty="true">
 <reportSet set="ADDITIONS" />
 <filterSpec>
 <includePatterns>
 <includePattern>
 urn:epc:pat:gid-96:145.233.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

At the “parentObjects” report a filter should be set up in a way that the F&C
module would report, every time they are captured, only patterns of the included
parent Objects Classes. An example of such a ReportSpec for the
“urn:epc:pat:gid-96:145.56.*” class is shown below.

<reportSpec reportOnlyOnChange="false" reportName="parentObjects_456"
 reportIfEmpty="true">
 <reportSet set="CURRENT" />
 <filterSpec>
 <includePatterns>
 <includePattern>
 urn:epc:pat:gid-96:145.56.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec>
 <pattern>
 urn:epc:pat:gid-96:145.56.*

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 26/46

 </pattern>
 </groupSpec>
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

7.2.1.2 Processing the ECReport

As soon as the report is received from the Business Event Generator module it is
first checked whether a “bizTransactionID” is included. If it has then the specific
one is used. If it has not then the last received one is used. Every
“transactionItem” and “parentObject” is received and from now on it is bind with
the specific “bizTransactionID”.

After this it is checked if a “parentObject” is reported. If it has been reported, the
it is used as the “parentObject” for every “transactionItem” received from now
on. If it hasn’t then the last received “parentObject” is used.

Finally, it is checked whether any “transactionItems” are reported. If they have
then these “transactionItems” get as “parentObject” and “bizTransactionID” the
last reported.

The rest of the information required to build the Aggregation Event is taken from
the BusinessTransaction’s attributes stored at the Information Services module
repository.

7.2.2 Creating an Object Event

To create an Object Event the Business Event Generation module should receive
an ECReport from the Filtering and Collection module comprised from two reports
named:

• “bizTransactionIDs_*”
• And “transactionItems_*”

Where (*) the ID of each report should be placed, taking in consideration the list
of “ECReportNames” Attribute of the BusinessTransaction Master Data type.

7.2.2.1 Setting up the ECSpec

At the “bizTransactionIDs” report a filter should be set up in a way that the F&C
module would report, every time they are captured, only patterns of the included
transaction ID Classes. An example of such a ReportSpec for the
“urn:epc:pat:gid-96:145.12.*” class is shown below.

<reportSpec reportOnlyOnChange="false" reportName="bizTransactionIDs_768"
 reportIfEmpty="true">
 <reportSet set="CURRENT" />
 <filterSpec>
 <includePatterns>
 <includePattern>

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 27/46

urn:epc:pat:gid-96:145.12.*
</includePattern>

 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

At the “transactionItems” report a filter should be set up in a way that the F&C
module would report, only the first time they are captured, only ID’s belonging in
the selected patterns of the included items Classes. An example of such a
ReportSpec for the “urn:epc:pat:gid-96:145.233.*” class is shown below.

<reportSpec reportOnlyOnChange="false" reportName="transactionItems_768"
 reportIfEmpty="true">
 <reportSet set="ADDITIONS" />
 <filterSpec>
 <includePatterns>
 <includePattern>
 urn:epc:pat:gid-96:145.233.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

7.2.2.2 Processing the ECReport

As soon as the report is received from the Business Event Generator module it is
first checked whether a “bizTransactionID” has been included. If the specific one
has been used then it is used. If it hasn’t then the last one received is used.
Every “transactionItem” received from now on is bind with the specific
“bizTransactionID”.

Finally BEG checks whether any “transactionItems” are reported. If so, these
“transactionItems” get as “bizTransactionID” the last reported.

The rest of the information required to build the Object Event is taken from the
BusinessTransaction’s attributes stored at the Information Services module
repository.

7.2.3 Creating a Quantity Event

To create a Quantity Event the Business Event Generation module should receive
an ECReport from the Filtering and Collection module comprised from two reports
named:

• “bizTransactionIDs_*”

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 28/46

• And “transactionItems_*”

Where (*) the ID of each report should be placed, taking in consideration the list
of “ECReportNames” Attribute of the BusinessTransaction Master Data type.

7.2.3.1 Setting up the ECSpec

At the “bizTransactionIDs” report a filter should be set up in a way that the F&C
module would report, every time they are captured, only patterns of the included
transaction ID Classes. An example of such a ReportSpec for the
“urn:epc:pat:gid-96:145.12.*” class is shown below.

<reportSpec reportOnlyOnChange="false" reportName="bizTransactionIDs_1234"
 reportIfEmpty="true">
 <reportSet set="CURRENT" />
 <filterSpec>
 <includePatterns>
 <includePattern>

urn:epc:pat:gid-96:145.12.*
</includePattern>

 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

At the “transactionItems” report a filter should be set up in a way that the F&C
module would report, only the first time they are captured, the count of the
included patterns and in which Class they belong to. An example of such a
ReportSpec for the “urn:epc:pat:gid-96:145.233.*” class is shown below.

<reportSpec reportOnlyOnChange="false" reportName="transactionItems_1234"
 reportIfEmpty="true">
 <reportSet set="ADDITIONS" />
 <filterSpec>
 <includePatterns>
 <includePattern>
 urn:epc:pat:gid-96:145.233.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec>
 <pattern>
 urn:epc:pat:gid-96:145.233.*
 </pattern>
 </groupSpec>
 <output includeTag="false" includeRawHex="false"

includeRawDecimal="false" includeEPC="false"
includeCount="true" />

</reportSpec>

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 29/46

7.2.3.2 Processing the ECReport

As soon as the report is received from the Business Event Generator module first
it is checked whether a “bizTransactionID” has been included. If it has been
included then the specific one is used. If it hasn’t then the last one received is
used. Every “transactionItem” received from now on is bind to the specific
“bizTransactionID”.

Finally BEG checks whether any “transactionItems” are reported. If so, the count
of these items and their Class get as “bizTransactionID” the last reported.

The rest of the information required to build the Quantity Event is taken from the
BusinessTransaction’s attributes stored at the Information Services module
repository.

7.2.4 Creating an Transaction Event

To create Transaction Event the Business Event Generation module should
receive an ECReport from the Filtering and Collection module comprised from
three reports named:

• “bizTransactionParentIDs_*”
• “bizTransactionIDs_*”
• And “transactionItems_*”

Where (*) the ID of each report should be placed, taking in consideration the list
of “ECReportNames” Attribute of the BusinessTransaction Master Data type.

7.2.4.1 Setting up the ECSpec

At the “bizTransactionParentIDs” report a filter should be set up in a way that the
F&C module would report, every time they are captured, only patterns of the
included transaction ID Classes. An example of such a ReportSpec for the
“urn:epc:pat:gid-96:145.19.*” class is shown below.

<reportSpec reportOnlyOnChange="false"
 reportName="bizTransactionParentIDs_736" reportIfEmpty="true">
 <reportSet set="CURRENT" />
 <filterSpec>
 <includePatterns>
 <includePattern>

urn:epc:pat:gid-96:145.19.*
</includePattern>

 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 30/46

At the “bizTransactionIDs” report a filter should be set up in a way that the F&C
module would report, only the first time they are captured, only patterns of the
included transaction ID Classes. An example of such a ReportSpec for the
“urn:epc:pat:gid-96:145.12.*” class is shown below.

<reportSpec reportOnlyOnChange="false" reportName="bizTransactionIDs_739"
 reportIfEmpty="true">
 <reportSet set="ADDITIONS" />
 <filterSpec>
 <includePatterns>
 <includePattern>

urn:epc:pat:gid-96:145.12.*
</includePattern>

 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

At the “transactionItems” report a filter should be set up in a way that the F&C
module would report, only the first time they are captured, only ID’s belonging in
the selected patterns of the included items Classes. An example of such a
ReportSpec for the “urn:epc:pat:gid-96:145.233.*” class is shown below.

<reportSpec reportOnlyOnChange="false" reportName="transactionItems_739"
 reportIfEmpty="true">
 <reportSet set="ADDITIONS" />
 <filterSpec>
 <includePatterns>
 <includePattern>
 urn:epc:pat:gid-96:145.233.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

7.2.4.2 Processing the ECReport

As soon as the report is received from the Business Event Generator module it is
first checked whether a “bizTransactionParentID” has been included or not. If it
has been included then the specific one is used. If it hasn’t then the last one
received is used. Every “bizTransactionID” and “transactionItem” received from
now on are bind with the specific “bizTransactionParentID”.

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 31/46

Finally, it is checked whether any “bizTransactionIDs” and/or “transactionItems”
are reported. If they are these “bizTransactionIDs” and/or “transactionItems”
get as “bizTransactionParentID” the last reported.

The rest of the information required to build the Transaction Event is taken from
the BusinessTransaction’s attributes stored at the Information Services module
repository.

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 32/46

Section 8 Available Tools for Defining Business Filters

8.1 Overview

As far as ease of development is concerned, the ASPIRE architecture specifies
the existence of an IDE (Integrated Development Environment), which is
conveniently called AspireRFID IDE (see Figure 5 below) enabling the visual
management of all configuration files and meta-data that are required for the
operation of an RFID solution.

Figure 5 Programmability Tooling

AspireRFID IDE has been designed as an Eclipse RCP (Rich Client Platform)
application that runs over Equinox OSGI server. It uses the command API to
define menus, pop-up menu items and toolbars so as to support easily plug-ins
and provide more control. Every tool is an eclipse plug-in/bundle that is able to
be installed or removed as needed. This way many editions of the AspireRFID
IDE can be released depending on the functionalities required (as simple or as
complicated depending on the demands) for the ASPIRE’s RFID middleware
blocks that will be used.

For specifying reprogrammable filters we use the ECSpec Editor and the Master
Data Editor with the help of whom we are able to produce the required metadata
to configure the Filtering and Collection module and the Business Event
Generator module.

8.2 ECSpec Editor

ECSpec editor is a tool which is able to produce and edit EPC ALE V1.1 compliant
ECSpec documents which are used to define the Filtering & Collection’s module
behavior concerning the kind of reports it will produce and which logical readers

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 33/46

it will use to produce it. A sample view of the ECSpec editor is shown at Figure 6
below.

Figure 6 ECSpec Editor View

8.3 Master Data Editor

The Master Data Editor (with support for Elementary Business Process
Description) enables users and/or consultants to edit enterprise data (Master
Data) including information about the company’s location, its business locations,
read points, as well as its business processes. In Figure 7 below the Master Data
editor tab for defining business location is shown.

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 34/46

Figure 7 Master Data Editor (Business Location)

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 35/46

Section 9 A complete example using Programmable filters

9.1 Describing the Problem

A Company Named “ACME” which is a Personal Computer Assembler collaborates
with a Microchip Manufacturer that provides it with the required CPUs. ACME at
regular basis places orders to the Microchip Manufacturer for specific CPUs. ACME
owns a Central building with three Warehouses. The first warehouse named
Warehouse1 has 2 Sections named Section1 and Section2. Section1 has an
entrance point where the delivered goods arrive.

ACME needs a way to automatically receive goods at Warehouse1 Section1 and
inform its WMS for the new product availability and the correct completeness of
each transaction.

9.2 Solution Requirements

An RFID Portal should be placed to ACME’s Warehouse1 Section1 entrance point
which will be called ReadPoint1. The RFID portal will be equipped with one
Reader WarehouseRfidReader1. The received goods should get equipped with
preprogrammed RFID tags from their “Manufacturer”. The received goods should
be accompanied with a preprogrammed RFID enabled delivery document. And
finally AspireRFID middleware (Figure 8 below) should be configured for the
specific scenario.

Figure 8 AspireRFID Architecture

9.3 Setting up the Filtering and collection Module

To Configure the Filtering and collection Module we should create an ECSpec for
creating Object Events for the Class of “products” and the Class of “receiving
notes” that we expect to pass through the gate and that concerns our transaction
(Figure 3). For the “bizTransactionIDs” reportSpec we will set the “receiving

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 36/46

notes” Class ID’s and for the “transactionItems” reportSpec we will set the
“received items” Class ID’s

• So the “receiving notes” Classes are:
o urn:epc:pat:gid-96:145.12.*
o urn:epc:pat:gid-96:239.30.*

• and the “received items” Classes are:

o urn:epc:pat:gid-96:145.233.*
o urn:epc:pat:gid-96:1.3.*
o urn:epc:pat:gid-96:1.4.*
o urn:epc:pat:gid-96:145.255.*

By using the ECSpec editor as shown in Figure 9 below

Figure 9 ECSpec Editor (Object Event)

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 37/46

We produce the ECSpec shown below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ECSpec includeSpecInReports="false"
xmlns:ns2="urn:epcglobal:ale:xsd:1">
 <logicalReaders>
 <logicalReader>AccadaSimulatorWithRPProxy
 </logicalReader>
 </logicalReaders>
 <boundarySpec>
 <repeatPeriod unit="MS">4500</repeatPeriod>
 <duration unit="MS">4500</duration>
 <stableSetInterval unit="MS">0</stableSetInterval>
 </boundarySpec>
 <reportSpecs>
 <reportSpec reportOnlyOnChange="false"
reportName="bizTransactionIDs_1234"
 reportIfEmpty="true">
 <reportSet set="CURRENT" />
 <filterSpec>
 <includePatterns>
 <includePattern>

urn:epc:pat:gid-96:145.12.*
 </includePattern>
 <includePattern>

urn:epc:pat:gid-96:239.30.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true"
includeCount="true" />
 </reportSpec>
 <reportSpec reportOnlyOnChange="false"
reportName="transactionItems_1234"
 reportIfEmpty="true">
 <reportSet set="ADDITIONS" />
 <filterSpec>
 <includePatterns>
 <includePattern>

urn:epc:pat:gid-96:145.233.*
 </includePattern>
 <includePattern>

urn:epc:pat:gid-96:1.3.*
 </includePattern>
 <includePattern>

urn:epc:pat:gid-96:1.4.*
 </includePattern>
 <includePattern>

urn:epc:pat:gid-96:145.255.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 38/46

 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true"
includeCount="true" />
 </reportSpec>
 </reportSpecs>
 <extension />
</ns2:ECSpec>

Which we will use to set up the Filtering & Collection module.

9.4 Setting up the Information Services Module

The Business Event Generator (Figure 3) needs to get the Transaction Event to
serve which is the Warehouse1DocDoorReceive (with URI
urn:epcglobal:fmcg:bte:acmewarehouse1receive) and the description of it from
the Information Sharing module repository which should be set up using the
information from Table 3 below from :

Business Transaction Attribute
Name

Business Transaction Attribute Value

urn:epcglobal:epcis:mda:ecreport_names bizTransactionIDs_1234,transactionItems_1234
urn:epcglobal:epcis:mda:event_name Warehouse1DocDoorReceive
urn:epcglobal:epcis:mda:event_type ObjectEvent
urn:epcglobal:epcis:mda:business_step urn:epcglobal:fmcg:bizstep:receiving
urn:epcglobal:epcis:mda:business_location urn:epcglobal:fmcg:loc:acme:warehouse1
urn:epcglobal:epcis:mda:disposition urn:epcglobal:fmcg:disp:in_progress
urn:epcglobal:epcis:mda:ecspec_name ECSpecObjectEventFiltering
urn:epcglobal:epcis:mda:read_point urn:epcglobal:fmcg:loc:45632.Warehouse1DocDoor
urn:epcglobal:epcis:mda:transaction_type urn:epcglobal:fmcg:btt:receiving

Table 3 Master Data (Specifying a Transaction Event)

To set up the above info we will use the Master Data editor whose Business
Transaction tab is shown at Figure 10 below.

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 39/46

Figure 10 Master Data Editor (Specifying a Transaction Event)

9.5 Setting up the Business event generation module

The Business Event Generation module (Figure 3) should be set up to receive
ECReports from the Filtering & Collection module (whose format is already
defined from the ECSpec build above) and set it to serve the Transaction Event
(urn:epcglobal:fmcg:bte:acmewarehouse1receive) defined with the master data
editor above.

9.6 Process description

ACME gives an order with a specific deliveryID to the Microchip Manufacturer.
With the previous action AspireRfid Connector subscribes to the AspireRfid EPCIS
Repository to retrieve events concerning the specific deliveryID.

The order arrives to ACME’s premises. ACME’s RFID portal (ReadPoint1) reads
the deliveryID and all the products that follow with the help of
WarehouseRfidReader1. AspireRfid ALE filters out the readings and sends two
reports to AspireRfid BEG, one with the deliveryID and one with all the products
tags. AspireRfid BEG collects these reports, binds the deliveryID with the

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 40/46

products tags and sends this event to the AspireRfid EPCIS Repository. The
AspireRfid EPCIS Repository informs the Connector for the incoming event which
in his turn sends this information to ACME’s WMS. When the WMS confirms that
all the requested products were delivered it sends a “transaction finish” message
to the AspireRfid Connector which in his turn unsubscribe for the specific
deliveryID and sends a “transaction finish” to the RFID Repository.

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 41/46

Section 10 Filter using Distributed Hash Table (investigations)

In this section, we present a new way of RFID filtering based on the concept of
DHT (distributed hash table), which is currently under investigations. Complete
specifications of these filtering rules will be detailed in Deliverable 4.3b.

This kind of filtering aims to offer a mechanism for querying only
useful/concerned readers/databases. For example, let’s consider the case of
study of a distributor with several warehouses spread all over a country. Assume
that warehouses are well organized (products of the same family are grouped,
etc.), and that readers are spread over the warehouses.

With such a system, if we need for instance to draw an inventory of a special
kind of products, we need to query every reader and/or database. Each of them
needs to filter and aggregate data. We thus introduce a certain latency factor
and load the network uselessly. For example, we ask to all nodes to scan all
products but to report only trousers. Readers (or system) may perform a filter to
count only trousers, no T-shirt, no sweat shirt, etc.

If, on the contrary, we assume that data are well organized and directed to a
proper database, based on a DHT mechanism, (every reader/database is seen as
a peer-to-peer node in a DHT based system), we can enhance performance.

The idea here is to assign one (or more) type to all nodes defining the kind of
nodes they are (readers, databases, etc.), or/and the kind of products they are
in charge. For example, databases near trousers in all warehouses are
responsible for the type “trousers”. When data concerning product kind A are
read, they are directed towards databases responsible for A, based on a DHT
direction. We can then group databases responsible for a special kind into a
virtual layer, and allow querying only readers/databases responsible of a well
defined type. Instead of asking to all nodes to filter products to report only
trousers, we ask only to the ones that are responsible for trousers. Others are
kept quiet. Note that a physical database may be responsible for several kinds of
products and thus is mapped to several virtual layers. Figure 11 shows a
projection of nodes by types (triangle, square or round).

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 42/46

Figure 11 Projection into layers

It defines three layers composed by nodes of the same type. If the square nodes
are readers/databases in different warehouses responsible for trousers for
example, all we have to do is to interrogate the second layer (composed only
with square nodes) with broadcast message to perform an inventory, anycast
message to find at least one pair of trousers (if exists), or k-cast to know if the
quantity is sufficient for a command.

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 43/46

Section 11 Conclusions

The generation of business events is an essential capability of an RFID
middleware platform in order to be able to rapidly develop and deploy end user
applications. This type of events is a combination of filtered but raw tag readings
with added-on business-related information. This process can transform
meaningless reading data to powerful and valuable information for intelligent
applications and services in upper layers.

As it has been extensively presented in this deliverable, the role of
programmable filters is essential for providing a stable but customizable platform
to build more complex services based on business events. In this direction, we
defined in this deliverable the core element of this platform through the definition
of the Programmable Filters Specification, its components and examples using
the associated filtering mark-up language (FML). Moreover we have provided the
proof of concept by implementing these components as part of the AspireRFID
middleware which exists in the scope of the Aspire project.

The filtering markup language not only will help in the programmability of the
tool but it will also provide modularity and the possibility of reusing filtering
templates. In this way future developers can start building up new and
interesting filtering policies from previously tested and mature solutions. This
deliverable has presented several examples of how to use the reusable filters,
the contents of their specification and the events currently supported.
Additionally ASPIRE offers an Integrated Development Environment that allows
easy development and definition of the filtering rules. Finally, initial research
studies in using DHTs in order to enhance the filtering functionalities of an RFID
system have also been provided.

This document is the interim version of the deliverable, thus being the preamble
to the final version of the specifications to be released by month 24 (M24) of the
project. It is therefore expected that by the time of releasing the second version
of this deliverable, mature filtering templates and policies that have been

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 44/46

Section 12 List of Acronyms

ALE Application Level Event
API Application Product Interface
ASPIRE Advanced Sensors and lightweight Programmable middleware for

Innovative Rfid Enterprise applications
BEG Business Event Generator
DoW Description of Work
EPC Electronic Product Code
EPCIS Electronic Product Code Information Services
ERP Enterprise Resource Planning
F&C Filtering and Collection
FML Filter Markup Language
HAL Hardware Abstraction Layer
HF High Frequency
HTTP HiperText Transfer Protocol
IDE Integrated Development Environment
IT Information Technology
iPOJO injected POJO
JMX Java Management Extensions
LLRP Low Level Reader Protocol
OBR OSGi Bundle Repository
OSGI Open Service Gateway Initiative
OSS Open Source Software
POJO Plain Old Java Object
RFID Radio Frequency Identification
RP Reader Protocol
SME Small and Medium Enterprise
SNMP Simple Network Management Protocol
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
TCO Total Cost of Ownership
TCP Transfer Control Protocol
UHF Ultra High Frequency
UML Universal Markup Language
WADL Wired Application Description Language
WMS Warehouse Management System
WP Work Package
XML Extensible Markup Language

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 45/46

Section 13 List of Figures

Figure 2 Description of Elementary RFID enabled Business Process 10
Figure 3 Programmable Filters Complete ASPIRE solution ... 12
Figure 4 Creating Event data Sequence .. 23
Figure 5 Programmability Tooling .. 30
Figure 6 ECSpec Editor View ... 31
Figure 7 Master Data Editor (Business Location) ... 32
Figure 9 ECSpec Editor (Object Event) .. 34
Figure 10 Master Data Editor (Specifying a Transaction Event) .. 37
Figure 11 Projection into layers .. 39

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 46/46

Section 14 List of Tables

Table 1 Business Transaction ID Attributes ... 20
Table 2 Event fields with Event Types mapping (2) ... 22
Table 3 Master Data (Specifying a Transaction Event) .. 36

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 47/47

Section 15 References and Bibliography

[1] Matthias Lampe, Christian Floerkemeier, “High-Level System Support for

Automatic-Identification Applications”, In: Wolfgang Maass, Detlef Schoder,
Florian Stahl, Kai Fischbach (Eds.): Proceedings of Workshop on Design of
Smart Products, pp. 55-64, Furtwangen, Germany, March 2007.

[2] BEA WebLogic. Understanding the Event, Master Data, and Data Exchange
Services. BEA WebLogic RFID Entersprise Server. [Online] October 12, 2006.
http://e-docs.bea.com/rfid/enterprise_server/docs20/pdf.html.

[3] EPCglobal, “The Application Level Events (ALE) Specification, Version 1.1”,
February. 2008, available at: http://www.epcglobalinc.org/standards/ale

[4] EPCglobal Inc™. Frequently Asked Questions - ALE 1.1. EPCglobal. [Online]
http://www.epcglobalinc.org/standards/ale.

[5] FossTrak Project. FossTrak Project. [Online]
http://www.fosstrak.org/index.html.

[6] EPC Information Services (EPCIS) Specification, Version 1.0.1, September 21,
2007 available at: http://www.epcglobalinc.org/standards/epcis/

[7] EPCglobal Inc™. The EPCglobal Architecture Framework Version 1.2. [Online]
September 10, 2007. http://www.epcglobalinc.org/standards/architecture/.

[8] Application Level Events 1.1(ALE 1.1) Overview, Filtering & Collection WG,
EPCglobal, March 5, 2008 , available at:
http://www.epcglobalinc.org/standards/ale

[9] C.Floerkemeier, C. Roduner, and M. Lampe, RFID Application Development
With the Accada Middleware Platform, IEEE Systems Journal, Vol. 1, No. 2,
December 2007.

[10] C. Floerkemeier and S. Sarma, “An Overview of RFID System Interfaces
and Reader Protocols”, 2008 IEEE International Conference on RFID, The
Venetian, Las Vegas, Nevada, USA, April 16-17, 2008.

[11] Russell Scherwin and Jake Freivald, Reusable Adapters: The Foundation of
Service-Oriented Architecture, 2005.

[12] Panos Dimitropoulos and John Soldatos, ‘RFID-enabled Fully Automated
Warehouse Management: Adding the Business Context’, submitted to the
International Journal of Manufacturing Technology and Management (IJMTM),
Special Issue on: "AIT-driven Manufacturing and Management".

[13] Architecture Review Committee, “The EPCglobal Architecture Framework,”
EPCglobal, July 2005, available at: http://www.epcglobalinc.org.

[14] Achilleas Anagnostopoulos, John Soldatos and Sotiris G. Michalakos,
‘REFiLL: A Lightweight Programmable Middleware Platform for Cost Effective
RFID Application Development’, accepted for publication to the Journal of
Pervasive and Mobile Computing (Elsevier).

[15] Benita M. Beamon, “Supply chain design and analysis: Models and
methods”, International Journal of Production Economics, Vol. 55 pp. 281-
294, 1998

[16] Zhekun Li, Rajit Gadh, and B. S. Prabhu, "Applications of RFID Technology
and Smart Parts in Manufacturing", Proceedings of DETC04: ASME 2004
Design Engineering Technical Conferences and Computers and Information in

Contract: 215417
Deliverable report – WP4 / D4.3a

ID: D4.3a_Programmable Filters – FML Specification
(Interim Version).doc

Date: 14 April 2009

Revision: 0.6 Security: Public
 Page 48/48

Engineering Conference September 28-October 2, 2004, Salt Lake City, Utah
USA.

