
ASPIRE FP7 215417

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the ASPIRE Consortium. Neither

this document nor the information contained herein shall be used, duplicated or
communicated by any means to any third party, in whole or in parts, except with prior written

consent of the ASPIRE consortium.

Collaborative Project

ASPIRE

Advanced Sensors and lightweight Programmable
middleware for Innovative Rfid Enterprise applications

FP7 Contract: ICT-215417-CP

WP3 – RFID Middleware Infrastructure

Public report - Deliverable

Core ASPIRE Middleware Infrastructure (Interim Version)
Due date of deliverable: M18
Actual Submission date:

Deliverable ID: WP3/D3.4a

Deliverable Title: Core ASPIRE Middleware Infrastructure (Interim
Version)

Responsible partner: AIT

Contributors:

John Soldatos, Nikos Kefalakis, Nektarios Leontiadis –
AIT
Nathalie Mitton, Loïc Schmidt - INRIA
Mathieu David - AAU
Didier Donsez, Kiev Gama – UJF

Estimated Indicative
Person Months: 12

Start Date of the Project: 1 January 2008 Duration: 36 Months

Revision: 1.4
Dissemination Level: PU

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 2/56

Document Information

Document Name: Core ASPIRE Middleware Infrastructure (Interim Version)
Document ID: WP3/D3.4a
Revision: 1.4
Revision Date: 20 July 2009
Author: AIT
Security: PU

Approvals

 Name Organization Date Visa

Coordinator Neeli Rashmi Prasad CTIF-AAU

Technical
Coordinator John Soldatos AIT

Quality Manager Anne Bisgaard Pors CTIF-AAU

Reviewers

Name Organization Date Comments Visa

Mathieu David CTID-AAU 18 Jun 09

Didier Donsez UJF 18 Jun 09

Ramiro Robles IT 19 Jun 09

Document history

Revision Date Modification Authors

0.1 21 May 09 First draft John Soldatos, Nikos Kefalakis,
Nektarios Leontiadis

0.2 28 may 09 Section 6 Loïc Schmidt
0.3 29 may 09 Section 8.2 Nathalie Mitton

0.4 4 Jun 09 Updated connector (12.3), added context
analysis (11) Nektarios Leontiadis

0.5 12 Jun 09 Updates in sections 6, 7, 9, 13, 17, 18 Nektarios Leontiadis
0.6 12 Jun 09 Section 9 Nikos Kefalakis
0.7 15 Jun 09 Section 11 Mathieu David
0.8 16 Jun 09 Paragraphs 10.2, 10.3 Nikos Kefalakis
0.9 16 Jun 09 Section 5, 7.2, 7.3 Kiev Gama, Didier Donsez

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 3/56

1.0 17 Jun 09 Section 1 Nektarios Leontiadis
1.1 18 Jun 09 Minor changes/corrections Mathieu David
1.2 18 Jun 09 Minor changes/corrections Didier Donsez
1.3 19 Jun 09 Final version Nektarios Leontiadis
1.4 19 Jun 09 Extended final version Ramiro Robles

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 4/56

Content

Section 1 Executive Summary .. 7
Section 2 List of Acronyms .. 9
Section 3 Introduction ... 11
Section 4 Overview of core ASPIRE middleware infrastructure 13
Section 5 Infrastructure components .. 15

5.1 OSGi (formerly known as Open Service Gateway Initiative) 15
5.1.1 Overview and purpose .. 15
5.1.2 Interfaces to other components .. 15
5.1.3 Current implementation status .. 15
5.1.4 Future steps .. 15

5.2 Application server .. 15
5.2.1 Overview and purpose .. 15
5.2.2 Interfaces to other components .. 15
5.2.3 Current implementation status .. 16
5.2.4 Future steps .. 16

5.3 Java Management Extensions (JMX) .. 16
5.3.1 Overview and purpose .. 16
5.3.2 Interfaces to other components .. 16
5.3.3 Current implementation status .. 16
5.3.4 Future steps .. 16

Section 6 Tag Data Translation (TDT) ... 17
6.1 Overview and purpose ... 17
6.2 Interfaces to other components .. 18
6.3 Current implementation status.. 18
6.4 Summary and future work ... 18

Section 7 Reader interfaces .. 20
7.1 Low Level Reader Protocol (LLRP) interface ... 20

7.1.1 Overview and purpose .. 20
7.1.2 Interfaces to other components .. 20
7.1.3 Current implementation status .. 20

7.2 Supported Readers .. 20
7.2.1 Overview and purpose .. 20
7.2.2 Interfaces to other components .. 20
7.2.3 Current implementation status .. 20
7.2.4 Future steps .. 21

7.3 Near Field Communications (NFC) ... 21
7.3.1 Overview and purpose .. 21
7.3.2 Interfaces to other components .. 21

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 5/56

7.3.3 Current implementation status .. 21
7.3.4 Future steps .. 21

Section 8 Filtering and Collection (F&C) ... 22
8.1 Infrastructure .. 22

8.1.1 Overview and purpose .. 22
8.1.2 Interfaces to other components .. 22
8.1.3 Current implementation status .. 22
8.1.4 Future steps .. 22

8.2 Anti-collision protocol.. 23
8.2.1 Overview and purpose .. 23
8.2.2 Current investigation status .. 23
8.2.3 Future steps .. 24

Section 9 Business Event Generator (BEG) ... 25
9.1 Overview and purpose ... 25
9.2 Interfaces to other components .. 26
9.3 Current implementation status.. 26
9.4 Future steps .. 27

Section 10 Electronic Product Code Information Services (EPCIS) 28
10.1 Overview and purpose ... 28
10.2 Current implementation status and interfaces to other components 28

10.2.1 Master Data Capture Interface ... 29

10.3 Future steps .. 30
Section 11 Object Name Service (ONS) ... 31

11.1 Overview and purpose ... 31
11.2 Interfaces to other components .. 32
11.3 Current implementation status.. 32

Section 12 Context analysis ... 33
12.1 Overview and purpose ... 33
12.2 Interfaces to other components .. 33
12.3 Current implementation status.. 34
12.4 Future steps .. 34

Section 13 Connector .. 35
13.1 Overview and purpose ... 35
13.2 Current implementation status.. 36

13.2.1 The Connector Engine .. 36
13.2.2 The Connector Client .. 37

13.3 Future steps .. 42
Section 14 Evolution of Aspire middleware infrastructure (D3.4b) 43

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 6/56

Section 15 Conclusions .. 44
Section 16 List of Figures ... 45
Section 17 List of Tables ... 46
Section 18 References and bibliography .. 47
Section 19 Appendix A – Filtering and Collection component (based on Fosstrak
implementation) user guide .. 48

19.1 Requirements .. 48
19.2 Deployment ... 48
19.3 Configuration .. 48
19.4 Logical Reader Configurations ... 48

19.4.1 LogicalReaders ... 49

Section 20 Appedix B – EPCIS (based on Fosstrak Implementation) users guide ... 51
20.1 Requirements .. 51
20.2 Deployment ... 51
20.3 Runtime Configuration of your EPCIS Repository .. 53

Section 21 Appendix C – Connector component Users Guide and Developer Guide
 55

21.1 Deployment ... 55
21.2 Configuration .. 55

21.2.1 Connector server .. 55
21.2.2 Connector client .. 55

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 7/56

Section 1 Executive Summary

Recent advances in low cost microelectronics and radiofrequency transceivers have paved
the way for new applications of radio frequency identification (RFID) systems in the fields of
supply chain management and inventory control. In contrast to conventional RFID
applications such as toll payment and access control, in which the design of the middleware
platform represented a simple and unchallenging task, in the new applications complex
interactions between different layers, network components, business contexts, and security
and privacy issues must be considered. As a consequence of this and despite the cost of
tags and readers are being constantly reduced, middleware platforms entry costs for small
and medium enterprises (SMEs) are still high thus limiting the expected widespread adoption
of RFID.

ASPIRE is developing an innovative, royalty free and privacy friendly middleware platform
that will allow SMEs reducing the total cost associated with the deployment of RFID systems.
This middleware platform is a primary target of the open source “AspireRfid” project, which
has been recently established in the scope of the OW2 community. The open nature of the
“AspireRfid” project asks for versatility in terms of the hardware and software that will support
the RFID solutions that will be built based on the ASPIRE middleware platform.

In this deliverable, we will describe developments related to the core Aspire middleware
infrastructure until the month 18 of the project. These components consist of both licensed
and consortium developed source code and are based on the Aspire architecture
specification from deliverables D2.3 and D2.4, which in turn were based on the review of
state-of-the art RFID middleware platforms presented in D2.1 and the end-user requirements
collected and analyzed in D2.2.

Being fully in line with the Aspire middleware architecture, the design in implementation
decisions for the Aspire middleware infrastructure have emphasized on the widest possible
adoption of the RFID technology, on the extensive and extensible configurability of these
components and the total compatibility with the Aspire IDE (Integrated Development
Environment), which is being developed in the scope of Work Package 4 (WP4). In principle,
ASPIRE middleware should be able to operate with any reader platform regardless of
vendors, frequency and supported functionality. Likewise, the ASPIRE middleware should
support different tag formats and legacy IT (Information technology) information system
languages. This freedom of choice is perfectly in line with both the “open” nature of the
middleware and the requirements of the SMEs. Avoiding vendor and technology lock-in is a
major requirement from the SME community with respect to RFID solutions.

As a result, the ASPIRE middleware incorporates reader and tag virtualization capabilities,
which does not rule out any reader or tag from being used in conjunction with the ASPIRE
middleware. Moreover, the diversity of deployment environment dictates the high efficiency
of the RFID filtering and data processing components, namely the ALE (application level
event) and BEG (business event generator) servers, and context analysis components.
Finally, the data provisioning components should cater for the diversity of end user
applications that require the clean and intelligently processed information. The end user
application would require this infrastructure to be able to “talk” in their own and
understandable language.

The following is a list of the core Aspire middleware components which are either existing or
planed. The developed components are publicly available through the project’s community

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 8/56

forge at OW2 (http://forge.ow2.org/projects/aspire/) and are divided into two development
branches and are currently under the process of unification. The basic infrastructure of the
Aspire technical developments along with the open nature of the components’ distribution
network, enable the creation of an open community which lead to wider adoption by users
and developers.

• Tag data translation
• Reader virtualization
• Filtering and collection
• Business events generator
• EPC information system
• Object naming service
• Context analysis
• Connectors

We will finally need to emphasize on the interim nature of this document, which intends to
report the development progress by the time of delivery of this document, and thus, some
components might slightly or significantly change in their implementation and configuration.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 9/56

Section 2 List of Acronyms

AAU Aalborg University
AIT Athens Information Technology
ALE Application Level Event
API Application Program Interface
ASPIRE Advanced Sensors and lightweight Programmable middleware for

Innovative Rfid Enterprise applications
BEG Business Event Generator
BTB Bluetooth Bridge
CC Connector Client
CE Connector Engine
CRM Customer Relationship Manager
DNS Directory Name Service
ECA Event condition actions
EDI Electronic Data Interchange
EPC Electronic Product Code
EPCIS Electronic Product Code Information Services
ERP Enterprise Resource Planning
F&C Filtering and Collection
GIAI Global Individual Asset Identifier
GLN Global Location Number
GPS Global Positioning System
GRAI Global Returnable Asset Identifier
GS1 Global Standard 1 (Standardisation group)
GTIN Global Trade Identification Number
HAL Hardware Abstraction Layer
HTTP HiperText Transfer Protocol
IDE Integrated Development Environment
IP Internet Protocol
IS Information System or Information Service
ISO International Standard Organization
IT Information Technology
IT Instituto de Telecomunicações
J2ME Java 2 Micro Edition
JAS Java Application Server
JaxWS Java web server
JCA Java Connector Architecture
JCP Java Community Process
JMX Java Management Extensions
JMS Java Messaging Service
JVM Java Virtual Machine
LGPL Lesser General Public License
LLRP Low Level Reader Protocol
MSS Monitoring Service Set
NFC Near Field communications
ODBC Object Database Connectivity
ONS Object Name Sevice

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 10/56

OSGI (formerly known as Open Service Gateway Initiative)
OSI Open System Interconnection
OSS Open Source Software
OW2 Open source community which is the merge of the ObjectWeb

Consortium and Orientware)
RDBMS Relational database management system
RFC Request For Comments
RFID Radio Frequency Identification
RP Reader Protocol
SME Small and Medium Enterprise
SNMP Simple Network Management Protocol
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
SSCC Serial Shipping Container Code
SVN Subversion
TDS Tag Data Standard
TDT Tag Data Translation
TCO Total Cost of Ownership
TCP Transfer Control Protocol
UJF University Joseph Fourier
UML Universal Mark-up Language
URI Uniform Resource Identifier
URN Uniform Resource Name
WMS Warehouse Management System
WP Work Package
XML Extensible Markup Language

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 11/56

Section 3 Introduction

Radio frequency identification (RFID) systems appeared in their first commercial format at
the end of the 1960s after an evolution process that started during the Second World War by
using the concepts of radar technology and the theory of reflected power. However,
widespread adoption of RFID would have to wait until the end of the 1970s and beginnings of
the 1980s in systems dedicated to access control and toll payments, which mainly used
transceivers in low and high frequency bands. These conventional systems simply consisted
of readers or interrogators, which request information from tags; tags or transponders, which
respond to reader’s requests; and simplified middleware and end processing servers which
present the meaningful information to the end user.

The last three decades, however, have seen a rapid development of low cost
microelectronics and radio frequency transceivers that have considerably reduced size and
costs of high, ultra-high and microwave frequency transceivers for RFID, and which, due to
its nature, allow longer reading ranges and faster reading rates than previous systems.
These facts further allow new RFID applications with higher mobility and with a larger
number of tagged items, which are perfect for supply chain management and inventory
control environments. Unlike conventional scenarios, these new applications require a more
robust and complex middleware platform in order to cover issues at different layers of the
communication architecture, from different business contexts and that must consider new
issues on security and privacy domains. This complexity has left several open research
issues in RFID middleware design that still pose a high entry cost for RFID technology
adopters, mainly SMEs.

The main goal of ASPIRE is therefore to develop a royalty free, open source, programmable
middleware platform for building RFID solutions. This platform is expected to facilitate
European companies in general and SMEs in particular to develop, deploy and improve
RFID solutions. In-line with its open-source nature this platform aims at offering immense
flexibility and maximum freedom to potential developers and users of RFID solutions. This
versatility includes the freedom of choice associated with the RFID hardware (notably tags
and interrogators), which will support the solution and the software that will consume the
information generated by the Aspire middleware.

The definition of ASPIRE middleware specifications has been a complex process that started
from the review of state-of-the art collaborative and middleware platforms in deliverable D2.1.
The reason for this review was to identify which middleware platform architectures were
currently in use by both proprietary and open source developers, and, at the same time, to
look into a new collaborative and innovation management process that would allow ASPIRE
developers and stakeholders to collaborate with each other in a more efficient manner. The
results in D2.1 pointed towards the reuse of open source components such as those from the
Accada project (currently Fosstrack) and which is based on an EPC (Electronic Product
Code) architecture. In addition to the review of state-of-the art, ASPIRE consortium
organized an online questionnaire, RFID information days in different countries of the
consortium and in general a market research regarding the requirements of SMEs in terms of
RFID applications, their IT infrastructure, their knowledge about RFID technology and in
general their willingness to adopt the new RFID paradigm replacing old ones such as optical
bar scanners. The results in D2.2 have indicated that SMEs do actually have high
requirements on RFID solutions but they are reluctant to adopt it due to little knowledge of
the technology, security and privacy issues, limited IT infrastructure at their premises and
mainly due to the high costs of associated solutions. This requirement collection process was

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 12/56

later reflected in the ASPIRE middleware architecture specifications provided in deliverables
D2.3 and D2.4.

 RFID middleware platforms consist of generic building blocks, for example filtering,
aggregation and collection functionalities, which refer, respectively, to the elimination of
those raw RFID readings that are not relevant for upper layer applications, the combination
of readings from more than one antenna or more than one reader in order to compensate for
reading errors, and the simple managing of all the received raw RFID readings. Other
building blocks are the business event generation, which translates RFID readings into
events with business meaning, information repository, which contains the true identity or
information about an RFID identifier and the object name service which has the same role of
a DNS (directory name service) in Internet architectures of providing the network address
where the information about an RFID identifier is located. In summary, an EPC-extended
architecture has been chosen with extra features that make it more attractive for SMEs, such
as added value sensing solutions and reader anti-collision management, and that
considerably simplifies and reduces the cost associated with the deployment of RFID
solutions. EPC architecture was also chosen because it provides a good trade-off between
low and high complexity hardware solutions, which is in line with the SMEs requirements of
providing, at an initial stage, low complex hardware components by pushing the intelligence
or complexity towards the middleware components. In this deliverable we provide
implementation details for such middleware components, which are in line with the Aspire
middleware architecture specifications. This deliverable reflects also previous deliverables in
work-package 3, mainly D3.2 and D3.2 which dealt, respectively, with tag data translations
and the filtering and collection middleware server.

In this deliverable we will provide information regarding the development of the core Aspire
middleware components. Namely,

• Section 4 will provide a detailed description of the Aspire middleware architecture
• Section 5 will discuss the environment on which the Aspire core middleware

components will work.
• Section 6 will provide details of the tag data translation component.
• Section 7 will provide implementation details on the components that will handle the

readers and sensors
• Section 8 will provide development details of the filtering and collection component,

which is responsible for the filtering of the raw data
• Section 9 will provide details of the business event generator component that handles

higher level data reports and add business logic.
• Section 10 will provide details on the EPCIS (Electronic Product Code Information

Services) components which is responsible for the storage and provision of the
processed information.

• Section 11 will give initial details on the ONS (Object Name Services) component
which acts as a name service in the network of things that the middleware
establishes.

• Section 12 will provide information on the context analysis component which is
responsible for handling the actuators and providing input on the rest of the core
components based on information gathered from a number of sources.

• Section 13 will provide information regarding the connector component which is
responsible for connecting the middleware with the actual consumers of the
information: the legacy IT systems.

Finally we provide appendices with low-level information for developers.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 13/56

Section 4 Overview of core ASPIRE middleware infrastructure

As it has been previously stated in deliverable D2.4, which defines the specifications on
which the Aspire Middleware is structured on, the ASPIRE middleware platform aims at
providing an effective method for SMEs to deploy RFID with a significantly lower entry cost
and without the need to engage extensively with low-level middleware development. In order
for the middleware to accomplish this target, it should be designed and built in a transparent
way for the end-users. This transparency will enable end-users and legacy enterprise
systems to exploit the services of the RFID sensor system in a non-obtrusive manner. The
miscellaneous components of this black box should be as much aligned as possible to the
standards so that this middleware will not end up as another proprietary solution.

The core Aspire middleware infrastructure provides the entire functionality upon which the
Aspire IDE (Integrated Development Environment) and tools are designed and intended to
work on. It is responsible for handling the

• Low level RFID and sensor readings
• Filtering and collection of the readings based on programmable filters
• Translation of the filtered data to meaningful business events
• Storing the business events
• Making available the Business events to Aspire or 3rd party applications
• Providing end-to-end management for the entire core aspire middleware

infrastructure

The high level architecture of the middleware is depicted in the following Figure 1.

SO
AP/

H
TTP

S
O

AP/H
TTP

SO
AP/H

TTPM
as

te
r D

at
a EC

Spec / LR
Spec

A
D

A
P

TE
R

A
D

A
P

TE
R

A
D

A
P

TE
R

A
D

A
P

TE
R

A
D

A
P

TE
R

A
D

A
P

TE
R

A
D

A
P

TE
R

A
D

A
P

TE
R C

ap
tu

re
 i/

f
Q

ue
ry

 i/
f

EP
C

 R
P

In

te
rfa

ce
EP

C
 L

LR
P

In

te
rfa

ce
H

A
L

In
te

rfa
ce

H
A

L
In

te
rfa

ce
O

SG
i

Figure 1 Aspire middleware architecture

Each node in this figure represents a hierarchical level of functionality, starting from the
hardware level, and provides a functional abstraction to a conceptually lower hierarchical
level.

The conceptual hierarchy that is imposed in the middleware architecture starts from the
hardware level, which contains all the required hardware with its proprietary APIs
(Application interface). At a higher level the hardware abstraction layer (HAL) is introduced
which allows handling a heterogeneous landscape of readers by hiding the proprietary

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 14/56

communication aspects of the hardware from the higher levels. The event level utilizes the
abstraction provided by the HAL and processes the streams of data from the hardware level
[1]. The outcome of this process is information about low level events.

The low level events, though lesser than the raw RFID reads, are significant in amount and
do not provide high level – or business level – information. The role of this additional filtering
and business events layer is handled by the Filtering and Collection (F&C) and the Business
Events Generator (BEG) component. These two components act in a complementary
manner transforming the lower level events into business events. This transformation is only
possible with the provision of additional metadata, which are appropriately handled by the
BEG server.

This information (i.e. business events) is then forwarded to a higher hierarchical level, where
it is consumed by the Information System level (IS). The IS level comprises a repository (i.e.
a database) which aggregates events received by the lower levels, applies additional
business logic and stores business information, which could then be conveyed to the
company’s enterprise IT systems (e.g., Warehouse Management Systems (WMS),
Enterprise Resource Planning (ERP) systems and corporate databases). Hence, well-
defined connectors should drive the integration of information sharing repositories with
enterprise business systems. The connectors are also in charge of exchanging information
between the IS repositories and the business systems using data-centric (e.g., direct data
access) and/or messaging mechanisms (e.g. electronic data interchange (EDI), extensible
markup language (XML) messaging, Web Services) mechanisms. Moreover, in the scope of
open loop systems this information can be provided to other business partners, through
either the enterprise systems or the information sharing repositories.

Apart from this functional plane in the architecture, there is a management plane which, as
the name suggests, manages and orchestrates the subsequent components. The
management plane ensures that the middleware components comprising an ASPIRE system
operate appropriately, while at the same time providing a functionality for runtime
management of the modules (e.g., starting, stopping, deploying and (re)configuring
components).

Under this prism, the following chapters drill down to the various architectural nodes and
specify their functionalities, interfaces and current implementation statuses.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 15/56

Section 5 Infrastructure components

5.1 OSGi (formerly known as Open Service Gateway Initiative)

5.1.1 Overview and purpose
The OSGi Services platform [14] is a framework for the development of modularized Java
applications using a Service Oriented Architecture approach inside the same Java Virtual
Machine (JVM). Although it is an effort that started in 1999, it was only recently that the
software industry has shown a trend (e.g. Eclipse, Jonas, Glassfish) to adopt it as a
component platform. Among the goals of OSGi are provisioning type isolation between
components, hot deployment of components (i.e. installation, updates without needing to
shutdown or reset the application), and a loosely coupled service based interaction between
these components. By separating a system in different and decoupled components, there is
a major advantage for system maintenance and evolution. In addition, this infrastructure
allows increasing the uptime of applications since it is possible to replace components on the
fly. In the context of ASPIRE, the OSGi components will greatly simplify the management
and deployment of its current and future modular components

5.1.2 Interfaces to other components
In the RFIDSuite (one of the branches of middleware within the ASPIRE project) the interface
to other components are exposed as services registered in the OSGi service registry.
Service dependency management is done via the Apache Felix iPOJO [15] component
model. Communication between different OSGi applications (edge and premise) on the RFID
Suite has been done using a message based middleware (Java Message Service) as well as
Web Services and SMTP (Simple Mail Transfer Protocol).

5.1.3 Current implementation status
The edge and premise servers of the RFID Suite have been implemented using OSGi
technology. As this branch is a continuation of an experiment originated from UFJ (University
Joseph Fourier), it is necessary to evaluate which concepts can be brought to the main
AspireRfid branch. Currently, only the Reader Core proxy is implemented as an OSGi
application.

5.1.4 Future steps
Evaluation of impact and priority concerning the parts of the Aspire middleware could be
modularized so they can take advantage of both the OSGi technology and the Apache Felix
iPOJO component model.

5.2 Application server

5.2.1 Overview and purpose
The Java Application Server (JAS) has been used in the RFID Suite for implementing the
EPCIS and the ONS which also has some Discovery Services functionality embedded. This
ONS was developed using a Web Services approach. The goal of using an application
server for deploying and hosting such applications was to take advantage of the scalability
and robustness provided by Java Enterprise technology.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 16/56

5.2.2 Interfaces to other components
The EPCIS has functionality exposed as HTTP (Hypertext transfer text) Web Services which
allow it to be interrogated about tag history and tag information. This interface enables the
data to be accessed by the ONS during the interrogation process as well enabling other
applications (e.g. graphical interfaces for data monitoring) not necessarily developed in Java
to access that information in a interoperable manner.

5.2.3 Current implementation status
The current implementations are maintained by UJF in the RFID Suite branch of the OW2
SVN (subversion) repository.

5.2.4 Future steps
Parts of the RFID Suite shall be integrated with the main AspireRfid branch. The ONS
approach that uses Web services is an interesting add-on to the standard DNS (Domain
Name Service) based EPC Global ONS, providing a high level interface for application
developers that need to interact with the AspireRfid middleware. However, data governance
is an important aspect on this part of the system.

5.3 Java Management Extensions (JMX)

5.3.1 Overview and purpose
Java Management Extensions are a standard Java API for the management and monitoring
of Java applications. Its functionality resembles the SNMP (Simple Network Management
Protocols) used for the management and monitoring of network equipment. By developing
our JMX probes (MBeans) and installing it in the running Java application, we can expose
management interfaces to the AspireRfid middleware for accessing or changing application
configuration at runtime in a distant management fashion.

5.3.2 Interfaces to other components
Several AspireRfid components expose JMX interfaces in the Reader Core proxy, which
could be accessed by other applications. New readers may also expose JMX interfaces so
they can be configured remotely.

5.3.3 Current implementation status
A plugin was developed for the Aspire IDE, acting as a high level management console that
provides a Graphical User Interface that can control the Reader core proxy, allowing
operations like starting, stopping and resetting the reader core proxy, changing configuration
parameters and so on.

5.3.4 Future steps
Exposing other system functionalities as JMX MBean interfaces would allow the control of
Aspire middleware components centralized in the Aspire IDE. Functionalities for resetting
and configuring other applications, for example, would minimize the user effort from
switching between different applications. The interfaces will be also compatible with the RFC-
139 (JMX Control of OSGi) which is currently not yet available to the public.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 17/56

Section 6 Tag Data Translation (TDT)

6.1 Overview and purpose

The EPC (Electronic Product Code) Network defines standards going from tag data to
Application Level Event (ALE) in its architecture framework. This ALE is used by clients to
obtain EPC data from sources.

At the lowest level is the Tag Data Standard (TDS) defined by EPCglobal. This data is
retrieved thanks to a low-level reader protocol (LLRP) which communicates with tags using
the Tag Protocol. A standard for reader management is also defined. All these standards aim
to unify the way of identifying uniquely items and manage compatible readers. EPCglobal
defines an interface for EPC Information Service (EPCIS) in order to share EPC-related data
in and between enterprises. This standard includes EPCIS Data Specification providing
definitions for all types of EPCIS data, and EPCIS Query Interfaces defining the way for
querying and delivering data from EPCIS. Another standard is used for retrieving EPC-
related data. The object name service (ONS) provides a way of finding an EPCIS which
contains the needed data.

Each of these standards uses its own format. Indeed, read data from tags can be used with
ALE (Application level event) , EPCIS, legacy applications, ONS or for writing information in
tags. Nevertheless, the product code must be translated into different formats to be used in
each of these scenarii. The tag data translation performs this task.

The tag-encoding URI (Uniform Resource Identifier) representation of an EPC is used with
the Application Level Event. The pure-identity URI is defined for EPCIS. The EPC must be in
its ONS hostname representation to perform an ONS query. The legacy application prefers
to use the legacy representation of an EPC. At last, the binary format can be used for
communicating with the reader (for the writing action). The translation between all these
formats can be performed at any level of the architecture, so the TDT is a very important tool
in the EPCglobal Network.

The ASPIRE TDT [1] provides a way to convert not only EPC tags, but also other
identification standards such as GS1 bar codes, ISO (International Standard Organization)
smart cards and tags (ISO 14443 and 15693), etc.

Figure 2 ISO 15693 Tag Data representation

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 18/56

6.2 Interfaces to other components

The ASPIRE TDT is a standalone tool that can be used at any level of the ASPIRE
architecture. It is currently used at the Reader Core Proxy (translation from BINARY to TAG-
ENCODING URI and vice versa) and the F&C server so as we are able to use the EPC
architecture and specifications up to the EPCIS and ONS layer (with translation into PURE-
ENCODING URI and ONS HOSTNAME). The TDT will be used at the Connector layer to
decode the captured events from the EPCIS repository and translate EPC into the LEGACY
representation that ERPs and WMSs "understand".

6.3 Current implementation status

The ASPIRE TDT is available in its 0.3 version. In this version, GS1 bar code, EPC tags, and
ISO 14443 and 15693 can be translated into various formats.

The ASPIRE TDT takes the ID as an input, encoded in any format, and a variable number of
parameters depending on each other: (i) desired output format; (ii) input data type (GS1 or
ISO); (iii) GS1 SI and code length (for output format GS1_AI_ENCODING); (iv) tag length,
company prefix length and filter (for some input format). Figure 4 shows the TDT behavior.
We use the Fosstrak implementation of the EPC TDT as core of EPC translation.

 Technical Requirements:
JDK 1.6.0_05 or higher
Memory No minimum requirements.
Operating system No minimum requirements.

Tested on Linux

6.4 Summary and future work

 The tag data translation engine roadmap is summarized in the table below:

Tag Data Standars Supported

Figure 3: ASPIRE TDT Engine

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 19/56

 Bar Code Tags (GS1 System) Yes
EAN/UPC Yes

ITF-14 Yes
GS1 DataMatrix Yes
GS1 DAtaBar Yes

GS1-128 Yes
EPC Global Tags Yes

SSCC Yes
GTIN Yes
GTIN Yes
GLN Yes
GRAI Yes
GIAI Yes
GLN Yes

ISO Tags To be supported
14443 Yes
15693 Yes
15962 To be supported

uCode Tags To be supported
Others IDs To be supported

Mac address for bluetooth and zigbee
sensors To be supported

Phone number (with country prefix) for cell
phones To be supported

Device id for OneWire devices (iButton) To be supported

Table 1 Summary of types of tag supported by the TDT

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 20/56

Section 7 Reader interfaces

7.1 Low Level Reader Protocol (LLRP) interface

7.1.1 Overview and purpose

The LLRP protocol enables the Aspire middleware to communicate with LLRP protocol
compliant readers. The low level reader protocol [6] is a standard specification defined by
EPCglobal to allow standardized communication with RFID readers. This communication
involves interacting with RFID tags and low level configuration of the reading devices. In
comparison to the previous reader protocol (RP), which is a high level protocol isolated from
the physical and other low layer parameters, LLRP was designed after communities realized
that it was convenient for the reader operation to have knowledge of low level parameters
such as reader transmit power, frequency band configuration, etc in order to tackle in a more
efficient manner problems such as reader collision and interference. LLRP also allows
retrieval of manufacturer information of the reader and discovery of reader capabilities,
among several other enhancements over the RP protocol.

7.1.2 Interfaces to other components

The LLRP interface is part of the Application Level Events (ALE) server. It enables this
component to interact with LLRP compliant readers using standard LLRP messages.

7.1.3 Current implementation status

This interface has been fully integrated into the Aspire middleware through the use of the
open source libraries provided by the open source project LLRP-Toolkit. The LLRP Toolkit
houses the development of open source libraries in various languages to help reader and
software vendors build and parse LLRP messages [7].

7.2 Supported Readers

7.2.1 Overview and purpose
UJF has already develop drivers for several RFID readers such as TagSys Medio L100, TI
Tiris 6350, ACR 122 (ie Touchatag), Violet Mirror in the RFID Suite branch.
Moreover, UJF has already developed reader drivers for other identification technologies
such as DS iButton. UJF has already developed a bridge between HTTP and Bluetooth to
collect tag events from HTTP client (ie legacy software in Java or other languages such as
C# or C) and Bluetooth clients (ie NFC phones).

7.2.2 Interfaces to other components
In the RFIDSuite, reader drivers are packaged as OSGi bundles manageable with JMX
MBean interface. The bundle containing the driver uses the Event Admin service to publish
tag events to the F&C bundle or others (ECA-event condition action- rule engine for
instance).

7.2.3 Current implementation status
The current implementations relies on the Event Admin service as described previously

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 21/56

7.2.4 Future steps
The future steps are the porting of the existing drivers in order to be compliant with the
EPCGlobal Reader Protocol (RP) standard version 1.1.

7.3 Near Field Communications (NFC)

7.3.1 Overview and purpose
Near-Field Communications (NFC) covers short distance communications between RFID
tags (ISO 14443A/B, Felica, MiFare) and fixed or mobile readers. Since the NFC has already
met the mass market in Japan (50 millions NFC-enabled phones and 7 millions NFC-enabled
PCs mid 2009) it will probably meet it in developed countries in the coming years.

NFC Forum defines specifications [12] for Near-Field Communications (NFC) applications
such as product information, smart posters, discount vouchers, ticketing and payment. The
specifications are limited to the list of supported RFID tags standards and products and to
the information stored in the tags. The forum has not yet defined a global architecture similar
to the EPCglobal one in order to integrate NFC information in companies’ information
systems. The JCP (Java Community Process) has specified an API for contactless
communications (JSR-Java Specification Request- 257) [13]. This API is mainly led by Nokia
and enables to develop J2ME (Java 2 micro-edition) applications using NFC tags.

7.3.2 Interfaces to other components
NFC phones should be supported by the Aspire middleware as mass-market RFID readers.
Moreover, NFC phones could query the ONS provided by Aspire using Web services or
RESTFul services.

7.3.3 Current implementation status
The RFID Suite branch provides already a library of SW components to ease the building of
NFC MIDLets (ie J2ME applications using the JSR 257). The NFC MIDLet can search a
Aspire BlueTooth Bridge (BTB), bind it and send tag events to the BTB. The BlueTooth
Bridge (BTB) is currently ALE event publisher converting and sending events to the F&C
layer.

7.3.4 Future steps
The future steps are the integration of the NFC library and the Bluetooth bridge as readers
compliant with the EPCGlobal Reader Protocol standard version 1.1. The library will be
completed by utilities components querying the future version of the Aspire ONS.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 22/56

Section 8 Filtering and Collection (F&C)

8.1 Infrastructure

8.1.1 Overview and purpose
The filtering and collection (F&C) component is a very significant component in the Aspire
middleware architecture. It is the implementation of the ALE standard [8] which specifies an
interface through which clients may interact with filtered, consolidated EPC data and related
data from a variety of sources. The design of this interface recognizes that in most EPC
processing systems, there is a level of processing that reduces the volume of data that
comes directly from EPC data sources such as RFID readers into coarser “events” of
interest to applications. It also recognizes that decoupling these applications from the
physical layers of infrastructure offers cost and flexibility advantages to technology providers
and end-users alike.

In the scope of large scale deployments, RFID systems generate an enormous number of
object reads. Many of those reads represent non-actionable “noise.” To balance the cost and
performance of this with the need for clear accountability and interoperability of the various
parts, the design of the ASPIRE middleware seeks to:

• Drive as much filtering and counting of reads as low in the architecture as possible.
• Minimize the amount of “business logic” embedded in the Tags.

8.1.2 Interfaces to other components
The Filtering and Collection Middleware is intended to facilitate these objectives by providing
a flexible interface to a standard set of accumulation, filtering, and counting operations that
produce “reports” in response to client “requests.” The client will be responsible for
interpreting and acting on the meaning of the report. Depending on the target deployment the
client of the ALE interface may be a traditional “enterprise application,” or it may be new
software designed expressly to carry out an RFID-enabled business process, but which
operates at a higher level than the “middleware” that implements the ALE interface.

In the scope of the ASPIRE project, the Business Event Generation (BEG) middleware would
naturally, consume the results of ALE filtering. However, there might be deployment
scenarios where clients will interface directly to the ALE filtered streams of RFID data.

8.1.3 Current implementation status
The Aspire Filtering and Collection component is a modified version of Accada RFID
Middleware, which is now called Fosstrak [9], licensed under LGPL (Lesser Public General
License). The Aspire F&C consortium has worked and implemented changes and bug fixes
on the original Accada middleware.

8.1.4 Future steps
The Fosstrak’s implementation of the ALE specification is not complete and it misses a very
significant part of the specification, called Writing API. This application programming
interface provides a standardized way of writing data onto the RFID chip memory and can be
extremely helpful in specific use cases.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 23/56

8.2 Anti-collision protocol

8.2.1 Overview and purpose
When a RFID tag enters the field of several readers, it can be read by all of them at the same
time. To illustrate such a case, let’s have a look at Figure 4. The tag enters the grey area
which is the range of reading of readers 1, 4 and 5 and will be read uselessly twice. This
spares energy and data processing since requiring some tag filtering at the ALE level to
identify such cases. Such a filtering required a fine spatio-temporal analysis of readers and
their range of detection. Moreover, this supposes that each tag identifier is leveraged to the
ALE level. This useless traffic spares bandwidth and ALE resources. Since such a situation
implies that an area is covered by at least two operational readers, data may be deteriorated
because of collision among readers.

Figure 4 Example of reader collision

An alternate solution would be to schedule the readers to avoid them to work all at the same
time and spend energy uselessly, i.e. a reader anti-collision mechanism. This will allow
leveraging less traffic, saving bandwidth and computing resources at the ALE level. In order
to reduce the memory and processing resource requirements, the reader scheduling should
be achieved in a distributed and local manner, while ensuring that at any time, the whole
area is covered. For instance, on Figure 4, reader 5 may remain quiet. Its area will be
collectively covered by readers 1,2,3 and 4 and the RFID tag will still be detected by readers
1 and 4.

8.2.2 Current investigation status

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 24/56

We have investigated several trails and decided that one of the best way was to adapt some
solutions from the sensor network research area such as in [1], [3], [4], [5]. Issues are pretty
similar and solutions for sensor networks have already been tested. Readers can be seen as
sensors and with two readers being defined as neighbours if and only if they cover a
common area.

Adaptations have to be run concerning the coverage area. In sensor networks applications,
the coverage area is a disc with predefined radius. Intersections are thus easy to compute. In
reader management, a simple algorithm has to be deployed to allow readers to know the
area they cover.

Anyway, applying such a solution allows storing only a small amount of data on each reader
and assailing them with lightweight algorithms. This will allow saving overall energy since
some readers would be able asleep leading to less data being processed at higher levels.

8.2.3 Future steps
Future steps are to analyze deeply how far activity scheduling for sensor networks can be
applied to reader management issues and to perform the adaptations.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 25/56

Section 9 Business Event Generator (BEG)

9.1 Overview and purpose

The architecture introduces a Business Event Generator (BEG) module between the F&C
and Information Sharing (e.g., EPC-IS) modules as shown in Figure 5 below. The role of the
BEG is to automate the mapping between reports stemming from F&C and IS events.
Instead of requiring developers to implement the mapping logic, the BEG enables application
builders to configure the mapping based on the semantics of the RFID application.

Figure 5 BEG interfaces

With the help of AspireRfid IDE (Integrated Data Environment) by describing the company’s
business processes and its underlying business infrastructure the required business events
that constitutes a company’s business functionality are created and stored at the RFID
repository that Business Event Generator engine exploits to define its functionality. In EPC
terms, BEG can be seen as a specific instance of an EPC-IS capturing application, which
parses EPC-ALE reports, fuses these reports with business context data using the assigned
business event from the company’s business metadata to serve as guide and accordingly
prepare EPC-IS compliant events. The latter events are submitted to the EPC-IS Repository,
based on an EPC-IS capture interface and related bindings (e.g., HyperText Transfer
Protocol (HTTP)/ Java Messaging Service (JMS). The specification of the BEG is a valuable
addition over existing RFID middleware architectures and platforms.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 26/56

9.2 Interfaces to other components

The Business Event Generator Module interface provides five methods for interaction with
the BEG Client which are all communicating with the BEG client by exchanging SOAP
(Simple Object Access Protocol) messages.

The first method is the “getEpcListForEvent” (EventStatus getEpcListForEvent(String
eventID)) which is used for returning to the BEG client an “EventStatus” object which
contains the real time list of epc-ids and the transaction ID of a chosen Event (String
eventID) from the list of events that the Business Event Generator module is already serving.
So with the help of this method someone can observe at real time the incoming IDs as they
are reported to the BEG and are related with a specific transaction Event.

The second method is the “stopBegForEven” (boolean stopBegForEven(String eventID))
which is used from the BEG client to stop serving an already defined Event by sending to it
its specific “EventID”.

The third method is the “getStartedEvents” (List<String> getStartedEvents()) Which returns a
list of Event IDs that the BEG is serving.

The fourth method is the “startBegForEvent” (boolean
startBegForEvent(VocabularyElementType vocabularyElementType, String
repositoryCaptureURL, String begListeningPort)) which is used to set up the Business Event
Generator module for start serving a specific Event. More specifically this method takes the
already pre described Elementary Business Transaction Event described at the Information
Sharing repository’s Master Data and uses it for configuring the Business Event Generator to
create Business Events from the ECReports received from the port given as variable to the
“startBegForEvent” method. If the method is successful it will return “true” otherwise it will
return “false”.

And finally the fifth method is the “getEventList” (List<VocabularyElementType>
getEventList(String repositoryQueryURL)) which is used for returning a list of all the
available defined Events from a Company’s EPCIS Master Data repository.

9.3 Current implementation status

The technical status of the Business Event Generator module is that for its deployment, it is
packed as a War file which is deployed on top of Apache tomcat 6.0 (and higher) and uses
Java version 1.6 (and higher).

For implementing the required web services for its configuration and management interface it
uses JaxWS (Java Webservices) framework and CXF/Spring technologies for its
implementation.

For capturing the produced ECReports from the Filtering and Collection layer it provides a
TCP/HTTP interface that is configured by defining different capturing port for each
Elementary Business Transaction’s defined report ID.

It uses Fosstrak’s Event Data Capture client implementation which follows the EPCIS 1.1
Capture interface which uses the JaxWS framework and CXF/Spring technologies for
implementing the required Web Services and the “construction” of the SOAP messages.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 27/56

It also uses Fosstrak’s Master Data Query client implementation which follows the EPCIS 1.1
query interface which uses the JaxWS framework and CXF/Spring technologies for
implementing the required Web Services and the “construction” of the SOAP messages

Finally, the Event Types that the Business Event Generation module supports are the
standard Event types defined in the EPCIS 1.1 Specifications which are:

• Quantity Events,
• Aggregation Events,
• Transaction Events and
• Object Events

9.4 Future steps

In addition to the already implemented features in the near future the Business Event
Generator module is planed to be augmented with some new ones and maybe to be
subjected to some changes even at its current Design.

Some of the possible changes/additions will be the creation of an interface for
connecting/supporting

• Actuators that will be able to connect to the AspireRFID architecture through the BEG
module and e.g. support a two way interaction with a “warehouse”.

• Interface for giving feedback to various devises (e.g. Account machines, delivery
Information at the gates/handheld devices)

Another probable change is that the BEG module will get implemented as an OSGi bundle
that can be deployed on top of a JOnAS Application Server (open-source implementation of
the Java EE application server) which is both a JavaEE container and a OSGi container.

Finally, a necessary addition to the BEGs features is to provide appropriate
Authentication/Access mechanisms for permitting or denying management and configuration
access for its various interfaces.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 28/56

Section 10 Electronic Product Code Information Services (EPCIS)

10.1 Overview and purpose

The ASPIRE Information Sharing repository and services are based on the EPCIS
specification [10] and their components are in charge of:

• Receiving application-agnostic RFID data from the filtering & collection middleware
through the Business Event Generation (BEG) application.

• Translating RFID data into corresponding business events. These events carry the
business context as well (e.g., they refer to particular companies, business locations,
business processes etc.).

• Making business events available and accessible to other upstream applications.

The Information Services of the ASPIRE Information Sharing middleware itself consists of
three parts:

• A capture application that interprets the captured RFID data.
• A repository (i.e. a database system) that provides persistence, and
• A query application that retrieves the business events from the repository.

Note that the ASPIRE Information Sharing repository:

• Deals explicitly with historical data (in addition to current data).
• Deals not just with raw RFID data observations, but also with the business context

associated with these data (e.g., the physical world and specific business steps in
operational or analytical business processes).

• Operates within enterprise IT environments at a level that is much more diverse and
multi-faceted in comparison to the underlying data capture and filtering & collection
middleware modules.

Generally, the ASPIRE information sharing repository is built to deal with two kinds of data:

• RFID event data i.e. data arising in the course of carrying out business processes.
These data change very frequently, at the time scales where business processes are
carried out.

• Master/company data, i.e. additional data that provide the necessary context for
interpreting the event data. These are data associated with the company, its business
locations, its read points, as well as with the business steps comprising the business
processes that this company carries out.

10.2 Current implementation status and interfaces to other components

Business events are generated at the edge and delivered into the Information Sharing
middleware infrastructure through an appropriate capture interface as shown in Figure 6. The
BEG middleware undertakes to automatically map application agnostic reading (from the
F&C layer) to the Information Sharing middleware. These events can be subsequently
delivered to interested enterprise applications through the interface enabling query of RFID
business events.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 29/56

Figure 6 EPCIS interfaces

Please note that the AspireRfid EPCIS Repository is a modified version of Accada RFID
Middleware, which is now called Fosstrak, licensed under LGPL. AspireRfid has
implemented changes and bug fixes on the original Accada middleware.

10.2.1 Master Data Capture Interface
A new feature that ASPIRE architecture introduces is the Master Data Capture Interface as
shown in Figure 6 which enables the EPCIS module to capture Master Data in the form of
Master Data xml compliant documents through this specialized interface. By providing this
interface a client is capable of adding new, deleting or altering EPCIS’s vocabulary data by
exchanging SOAP messages. The two client methods that have been created for achieving
what is described above are the “simpleMasterDataEdit” and the
“simpleMasterDataAndAttributeEdit”.

The “simpleMasterDataEdit” method (boolean simpleMasterDataEdit(String vocabularyType,
String vocabularyElementURI, String mode)) is used to insert, update or Delete a
vocabulary's Element. It takes three variables as input:

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 30/56

• the Vocabulary type
• the Vocabulary element URI
• the mode that the method is “operating”.

When using delete mode either only the element with its attributes can be deleted or the
element with its attributes and with all its children elements and its children's attributes. When
using insert mode if the Vocabulary element is not inserted yet it will be inserted. For using
the alter URI mode (2) the Old URI with the new one should be given at the
"vocabularyElementURI" parameter merged together with the "#" sign between them (e.g.
"urn:epcglobal:old#urn:epcglobal:new"). If the execution of the method is Successful it will
return “true” otherwise “false”. The supported operational modes are 4:

• mode 1: insert
• mode 2: alterURI
• mode 3: singleDelete
• mode 4: Delete element with its direct or indirect descendants

The “simpleMasterDataAndAttributeEdit” (simpleMasterDataAndAttributeEdit(String
vocabularyType, String vocabularyURI, String vocabularyAttribute, String
vocabularyAttributeValue, String mode)) can insert, update, delete a Vocabulary's Element
Attribute. If the Vocabulary is not inserted yet it will be inserted. The vocabularyURI,
vocabularyAttribute pair should be unique so if it already exists it will do nothing except if the
mode is set to "2" which alters the chosen attribute. It takes five variables as input:

• the Vocabulary Type
• the Vocabulary URI
• the Vocabulary Attribute
• the Vocabulary Attribute Value
• the methods “operational” mode

If the execution of the method is Successful it will return “true” otherwise “false”. The
supported operational modes are 3:

• mode 1: Insert
• mode 2: Alter Attribute Value
• mode 3: Delete Attribute

10.3 Future steps
Except the already implemented functionalities of the Information Sharing repository there
are still some that need to get implemented which are:

• Add new Field extensions for the existing Event Types extensions in the Data
Definition Layer (Useful to store e.g. GPS-global positioning system- coordinates,
temperature, hygrometry, shock events, survey answers, security check, etc.).

• Investigation of Implementing EPCIS repository as an OSGi bundle that can be
deployed in JOnAS Application Server.

• Implement EPCIS specifications, and probably extended, Authentication/Access
mechanisms.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 31/56

Section 11 Object Name Service (ONS)

11.1 Overview and purpose
The Object Name Service (ONS) is a service that returns a list of network accessible service
endpoints that pertain to a requested Electronic Product Code (EPC). The ONS does not
contain actual data about the EPC; it only contains the network address of services that
contain the actual data. The ONS uses the Internet’s existing Domain Name System (DNS)
for resolving requests about an EPC. In order to use DNS to find information about an item,
the item’s EPC must be converted into a format that DNS can understand, which is the
typical, “dot” delimited, left to right form of all domain-names. The ONS resolution process
requires that the EPC being asked about is in its pure identity URI form as defined by the
EPCglobal Tag Data Standard [EPC] (see Figure 5-1) [11]. This URI conversion is done in
the local server by the TDT module. The figure 10-1 represents the ONS Architecture.

Figure 7 ONS Architecture

When the manufacturer tags the product, the EPC information related to the product (e.g.
manufacture date, location, expiration date, etc.) is stored in its local EPC IS. The product is
then shipped to the retailer. Once received, the retailer record some information related to
the product in its EPC IS. If the retailer wants to retrieve some manufacturer information
related to a specific product, the retailer needs to send a request to the root ONS, which
knows the location of the local ONS of the manufacturer (1). The retailer can then send a
request to the local ONS of the manufacturer (2), which knows the location of the EPC IS
related to the EPC of the specific product requested. Finally, the retailer can access the EPC
IS of the manufacturer to retrieve the information related to the product (3).

If there are several links (e.g. shipping company, large retailer, etc.) in the distribution chain,
the ONS will always and only redirect the request to the manufacturer that produced the tag.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 32/56

The data related to a specific EPC and stored in the local EPC IS of the different links cannot
be retrieved by requesting the ONS.

11.2 Interfaces to other components
The ONS component is intended to receive inputs from the ONS resolver (translation of the
EPC into PURE-ENCODING URI and ONS HOSTNAME), which is part of the Tag Data
Translation component (section 5). It communicates its results to the Business Event
Generator and the EPC IS repository, where the information related to the product is
recorded.

11.3 Current implementation status
A first version of the ONS component has been developed by UJF in the rfidsuite. It has
been freely inspired by the model used by the EPC Global principles but this ONS can be
queried using Web-based Services technologies instead of the DNS-based protocol. This
solution is well suited for ASPIRE that does not want to get bind by a proprietary service. The
development of the ONS component is ongoing and will soon be integrated in the
AspireRFID Middleware.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 33/56

Section 12 Context analysis

12.1 Overview and purpose
On top of RFID programmability, the ASPIRE RFID middleware platform has been designed
to incorporate intelligence, enabling context-analysis and reasoning over numerous sensors
observations. Reasoning enables the ASPIRE middleware to alleviate problems associated
with the physical layer of the RFID network (e.g., incorrect readings). Furthermore, the
ASPIRE middleware intelligence is also designed to support automated adaptation to the
capabilities of the underlying readers network. Having the intelligence within the middleware
platform will push functionality at the edge of the reader network and will allow the use of
low-cost hardware (e.g., interrogators, gateways, tags) for the RFID solutions. A low cots
reader is also part of the ASPIRE project and it is being developed in the context of WP5.

The context analysis component of the Aspire middleware platform is based on a powerful
rule engine that constantly evaluates numerous operational parameters in semi real time and
produces decisions based on the rules that have been predefined.

12.2 Interfaces to other components
The context analysis component is intended to receive input from the various Aspire
middleware blocks and communicate its decisions to any interested component. The
components that can provide input to the context analysis component are the following:

• The filtering and collection (F&C) server
This server will provide input to the component that is related to the filtered reading of
RFID and sensor data, like temperature, pressure, etc. The context analysis
component will be able to receive such data through the standard interfaces that the
ALE standard defines which are also supported by the F&C server.

• The business event generator (BEG)
The BEG component is responsible for generating intelligent business events based
on its configuration and input from the F&C server component. The context analysis
component will be able to receive this kind of intelligent input and process it as long
as there are existent rules defined in the engine. The component will be able to
receive BEG data through the standard interface that this component defines.

• The EPCIS server
The EPCIS component is responsible, among others, for handling the business
events subscriptions and for storing the events in its internal repository. The context
analysis component will be able to subscribe to EPCIS events through the standard
EPCIS interfaces and generate intelligent decisions which can be usable by many
other components like the actuators, the connectors, etc.

• The connector component
The context analysis component will be able to receive data from legacy IT
applications through the connector component and combine this information with
other sources to make intelligent decisions.

In addition to getting input from the aforementioned sources, the context analysis component
will be able to provide input, after asserting and evaluating the input data, to the following
components:

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 34/56

• The actuator components
As these components are responsible of generating reactions to certain triggers, they
can be defined as the primary consumers of the context analysis products
(decisions).

• The Connector component
The legacy IT applications that will be connected with the Aspire middleware platform
through the connector component may be able or may require additional input, apart
from the data coming from the EPCIS repository. This input may be relevant to the
general operational status of the infrastructure, etc. Thus the context analysis
component will be able to provide such input through the connector component when
requested to do so.

12.3 Current implementation status
The development of the context analysis component is a relatively complex task that requires
other components from which requires input or which require input from this component to be
concretely designed (e.g. actuators). Thus, the context analysis component is currently in a
premature state.

The Aspire consortium responsible partners have currently defined the operating
environment of the component’s rule engine. For this purpose we have agreed on the use of
the Jess rule engine. Jess is a rule engine and scripting environment written entirely in Sun's
Java language and uses an enhanced version of the Rete algorithm to process rules. It is
available in a dual licence scheme for academic and commercial use.

12.4 Future steps
The future steps of this component can identified in the process of defining a set of rules
that will analyze the context and produce the intelligent decisions, in coding the actual rule
engine and finally, integrating the component with the rest of the Aspire middleware
components.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 35/56

Section 13 Connector

13.1 Overview and purpose

RFID middleware components described in the previous paragraphs provide a foundation for
translating raw RFID streams to meaningful business events comprising business context
such as where a tag was seen, at what time and in the scope of which process. Enterprises
can then leverage these business events through their legacy IT systems (e.g., ERPs, WMS,
corporate databases), which are used to support their business processes.

To this end, there is a clear need for interfacing these legacy systems, with the information
sharing repositories, established and populated as part of the RFID deployment. Interfacing
between IT systems and the information sharing repository (EPCIS), as well as other
middleware blocks of the RFID deployment is realized through specialized middleware
components that are called “connectors”. [2]

The main purpose of connector components is to abstract the interface between the EPC
information sharing repository and the enterprise information systems. Hence, connectors
offer application programming interfaces (APIs) that enable proprietary enterprise information
systems to exchange business information with the ASPIRE RFID middleware system.

A Connector therefore provides:

• Support for services and events: Composite applications can call out to existing
functionality as a set of services, and to be notified when a particular event type (for
example, “purchase order inserted,” “employee hired”) occurs within an existing
application.

• Service abstraction: All services have some common properties, including error
handling, syntax, and calling mechanisms. They also have common access
mechanisms such as JCA (Java Connector Architecture), JDBC, ODBC (Object
Database Connectivity), and Web services, ideally spanning different platforms. This
makes the services more reusable, while also allowing them to share
communications, load balancing, and other non-service-specific capabilities.

• Functionality abstraction: Individual services are driven by metadata about the
transactions that the business needs to execute.

• Process management: Services embed processes, and process management tools
call services. Hence, connectors support the grouping of several service invocations
to processes.

In this way, a corporation having a legacy IT system can install and communicate with an
RFID infrastructure without needing to change the IT infrastructure or significantly alter it.
The effort needed to succeed towards the direction of incorporating the RFID infrastructure
into the information loop is designed to be minimal and as it is going to be explained later on.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 36/56

13.2 Current implementation status
The connector component is intended to provide means of transparency between an
application and the EPCIS repository. An EPCIS repository, as stated in a previous chapter,
is able to collect business level events, and provide this information using either a push or a
pull concept. The Connector that we define in this paper is a two-tier component, namely the
Connector Engine (CE) and the Connector Client (CC) that operate in the basis of a
transaction. These two collaborating tiers enable the user application to receive EPCIS
events for specified operations called transactions, using the push or the pull model in a
uniform way. By this, we mean that an application can either subscribe to a specific type of
operation and when these occur, the application can be notified by the connector, or an
application can request information about past observations - defined by time boundaries - of
the specific operation.

In the following sections we will describe the tiers that define the Connector interface
specification, along with the messages that are used for the internal communication between
the tiers and the external communication of the Connector with the EPCIS and with the client
application.

13.2.1 The Connector Engine
This tier that is part of the Connector component, has been designed to be "next-to" the
EPCIS component. By that, we mean that CE is responsible for the communication of the
Connector with the EPCIS repository through the EPCIS Query and Capture Interfaces [].
The CE tier interface specification also provides a web service interface to receive requests
from the CC tier regarding subscription and polling requests for specific transaction type.
This interface is extensible and enables the definition of additional operations.
The web service specification defines two operations, namely the:

• startObservingTransaction and the
• stopObservingTransaction

Both of them take as an argument a subscriptionParameters type. The decision to use this
construct in both operations permits us to handle in a uniform way poll or subscription
requests.

A transaction, as described before, can be mapped to a legacy IT system event. By invoking
the startObservingTransaction operation, the legacy system will be notified for this event. If
the observation is based on the push model (subscription) and depending on the defined
intervals for checking if the event has occurred, the legacy system will be notified by the CC
about this occurrence whenever the time triggers are met. If the observation is based on the
pull model (poll), the legacy system will be notified about the past occurrences - limited by
the time constraints - immediately.

The invocation of the stopObservingTransaction is designed to be invoked by legacy
applications that have previously used the startObservingTransaction operation to subscribe
to specific transaction events. This operation handles the cancellation of the subscription on
the EPCIS side and the mandatory alteration of specific Master Data in the EPCIS repository
through a transaction delete operation. Table 1 is a description for each of the fields.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 37/56

13.2.2 The Connector Client
This component has been designed to be located on the side of the legacy IT system and
support its interactions with the RFID infrastructure. It is responsible for the following number
of operations:

• Provide an interface to the legacy IT systems for receiving query (subscription or
polling) requests though a provided application programming interface or through a
web service

• Submit the queries to the Connector Engine that it interacts with

• Receive query responses from the CE. The responses may either be a response to a
push (subscription) or pull (poll) request, and

• Pass the information to the legacy software

The component provides a web service to receive events from the CE based on subscribed
or polled queries. This operation is called asynchronously from the CE component when
event information is available and receives an Event object that encapsulates information
provided by EPCIS events and is defined in the EPCIS 1.0.1 specification []. The following
table is the definition of the Event structure in XML format. By encapsulating all the required
information within one specific structure instead of four that the EPCIS specification defines,
enables legacy IT systems to handle common events captured by the RFID infrastructure
with a minimal development, testing and deployment effort.

A legacy IT system wanting to interact with an RFID infrastructure that is connector-enabled
would only need to attach to CC by implementing a small number of operations that would
handle the Events whenever they occur and by enabling the submission of queries through
calls to the CC component.

<xs:complexType name="subscriptionParameters">
 <xs:sequence>
 <xs:element name="doPoll" type="xs:boolean"/>
 <xs:element minOccurs="0" name="initialTime" type="xs:dateTime"/>
 <xs:element minOccurs="0" name="queryDayOfMonth" type="xs:string"/>
 <xs:element minOccurs="0" name="queryDayOfWeek" type="xs:string"/>
 <xs:element minOccurs="0" name="queryHour" type="xs:string"/>
 <xs:element minOccurs="0" name="queryMin" type="xs:string"/>
 <xs:element minOccurs="0" name="queryMonth" type="xs:string"/>
 <xs:element minOccurs="0" name="querySec" type="xs:string"/>
 <xs:element minOccurs="0" name="replyEndpoint" type="xs:string"/>
 <xs:element name="reportIfEmpty" type="xs:boolean"/>
 <xs:element minOccurs="0" name="subscriptionId" type="xs:string"/>
 <xs:element minOccurs="0" name="transactionId" type="xs:string"/>
 <xs:element minOccurs="0" name="transactionType" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 38/56

The client application should implement the ClientEventHandler interface and register itself
through the setEventHandler of the ConnectorClientImpl class so that it may receive the
events and do whatever it wants.

<xs:complexType name="event">
 <xs:sequence>
 <xs:element minOccurs="0" name="action" type="xs:string"/>
 <xs:element minOccurs="0" name="bizLocationId" type="xs:string"/>
 <xs:element minOccurs="0" name="bizStepId" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="bizTransactionList"

nillable="true" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="childEpcs"

nillable="true" type="xs:string"/>
 <xs:element minOccurs="0" name="dispositionId" type="xs:string"/>
 <xs:element minOccurs="0" name="epcClass" type="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="epcList" nillable="true"

type="xs:string"/>
 <xs:element name="eventTime" type="xs:long"/>
 <xs:element minOccurs="0" name="parentId" type="xs:string"/>
 <xs:element name="quantity" type="xs:int"/>
 <xs:element minOccurs="0" name="readPointId" type="xs:string"/>
 <xs:element minOccurs="0" name="subscriptionId" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 39/56

Field name XML Field
type Description

Use with
startObservingTra
nsaction

Use with
stopObservin
gTransaction

When is required

doPoll boolean

This parameter handles that way a request will be
processed. If false, then a new subscription will be
registered within the EPCIS with information that is
provided with other elements. If true then the query
will be executed only once and the results will be
returned immediately. In any case the replyEndpoint
will be used to send the result.

yes no Mandatory for new
subscriptions.

querySec string

The category of queryX parameters define the time
interval that the query will be executed within the
EPCIS repository if doPoll is false. At least one of
these parameters should be defined in this case.
These parameters take a comma separated list of
integers that define the query schedule. For example,
if querySec has the value 1,31 then the query will be
executed on the 1st and 31st second of every minute.

Specifies that the query time must have a matching
seconds value. The range for this parameter is 0
through 59, inclusive.Error! Reference source not
found.

yes no Mandatory for new
subscriptions.

queryDayOfWeek string

Specifies that the query time must have a matching
day of week value. The range for this parameter is 1
through 7, inclusive, with 1 denoting Monday, 2
denoting Tuesday, and so forth, up to 7 denoting
Sunday. This numbering scheme is consistent with
ISO-8601. [10]

yes no Mandatory for new
subscriptions.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 40/56

queryHour string

Specifies that the query time must have a matching
hour value. The range for this parameter is 0 through
23, inclusive, with 0 denoting the hour that begins at
midnight, and 23 denoting the hour that ends at
midnight. [10]

yes no Mandatory for new
subscriptions.

queryMin string
Specifies that the query time must have a matching
minute value. The range for this parameter is 0
through 59, inclusive. [10]

yes no Mandatory for new
subscriptions.

queryMonth string
Specifies that the query time must have a matching
minute value. The range for this parameter is 0
through 59, inclusive. [10]

yes no Mandatory for new
subscriptions.

queryDayOfMonth string
Specifies that the query time must have a matching
minute value. The range for this parameter is 0
through 59, inclusive. [10]

yes no Mandatory for new
subscriptions.

replyEndpoint string
Specifies that the query time must have a matching
minute value. The range for this parameter is 0
through 59, inclusive.

yes no Mandatory for new
subscriptions.

reportIfEmpty boolean Indicates whether a query result will be send to the
Connector client even if there is no matching event. yes no Mandatory for new

subscriptions.

subscriptionId string Should be a universally unique identifier to identify a
subscription. no no Mandatory if doPoll

false.

transactionId string Indicates the events that we are interested in. yes no
Mandatory for new
subscriptions and
for deletions

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 41/56

transactionType string Indicates the optional event type that we are
interested in. yes no

Mandatory in
deletions only if it
had been defined in
the initial
subscription.

initialTime dateTime

This parameter defines the time constraint after which
all matching events will be returned. If doPoll is false,
and the initialTime refers to the past, the old matching
events will be returned within the first response
message.

yes no Mandatory for new
subscriptions.

Table 1 Subscription parameters field’s explanation

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 42/56

The client application should use the RegistrationManager operations to register or execute
new queries passing a SubscriptionParameters object and unregister from existing
subscriptions.

13.3 Future steps
The connector concept needs to be validated in real world situations. Such situations would
involve widely adopted legacy IT systems being able to communicate with a RFID
infrastructure through the connector component. The communication process should involve:

• The IT system to be able to register for specific business events in the EPCIS
• The EPCIS to be able to send business events to registered

In order to be able to test the validity of the connector concept and design, we will need to
develop connectors for major legacy IT systems and evaluate the operational behavior in real
cases. Then, having the evaluation results in hand we will be able to make any required
amendments and/or define extensions to the connector interface defined, to accommodate
the required functionality. This process will iterate until we have concrete evidence through
the validation process that every major requirement based on the legacy IT systems needs
has been accommodated by the connector design.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 43/56

Section 14 Evolution of Aspire middleware infrastructure (D3.4b)

In the previous chapters we have the work done until project month 18 regarding the core
Aspire middleware infrastructure. A lot of work needs to be done until the final version of this
deliverable so the realistic deployments of the middleware can be possible. The most
immediate action is the merge of the development branched of the project development forge
(available at http://forge.ow2.org/projects/aspire/). The two branches (AITdev and rfidsuite)
are the results of effort done in parallel and lead by two Aspire partners. Here is the list of the
components that each branch is going to provide:

• Provided by AITdev branch
o Reader Core Proxy
o ALE server
o EPCIS
o BEG
o Connectors

• Provided by rfidsuite branch
o Plug and play sensors
o EPCIS extensions to store sensor data
o GWT-based User Console
o ONS based on Web Services
o Porting the existing readers (Tagsys, TIRIS, ACS122, Mir:ror) to the reader

core proxy
o Bluetooth bridge as a reader
o HTTP bridge as a reader
o NFC MIDLets
o Management and deployment :

 LDAP for X509 certificates publication and for architecture description
 JMX for configuration and monitoring

o JVisualVM and JConsole plugins for OSGi management (may be contributed
to the Apache Felix community).

Moreover, because of the licensing issues that have recently been arose, the consortium will
need to reevaluate the option of using licensed software by Fosstrak and will investigate the
possibility of using exclusively consortium developed components. In this case some of the
core components of the Aspire middleware infrastructure will be replaced by new
implementation with possibly new configurations.
A final step in the evolution of the core infrastructure components will be the development of
the components that haven’t yet entered the development phase but are currently frozen in
the analysis phase.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 44/56

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 45/56

Section 15 Conclusions

In this deliverable we have analyzed the core components of the Aspire middleware,
providing information for each of these components until the time of delivery of this
document. As it is evident by the interim nature of this deliverable, this analysis is by no
means complete, but, on the other hand, is a work in progress. It intends to define the current
implementation status of the middleware components along with the planed future steps that
can currently be identified as important to complete the specified components’ functionalities.
Despite that, all work done can be evaluated as of high importance for the rest of the
components that will be completed until the final version of this deliverable is due. That is
because of the core nature of the components currently implemented.

Nevertheless, the currently developed software, while in its infancy for realistic deployments,
is an actual infrastructure for community development, making available to the world open
source RFID middleware components.

Moreover we need to draw focus on the need to change existing components that have been
defined on this document, because of the licensing issues that have been identified in
section 13. These components along with the development details of components not
currently available, will be the subject of final version of this deliverable (D3.4b).

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 46/56

Section 16 List of Figures

Figure 1 Aspire middleware architecture .. 13
Figure 2 ISO 15693 Tag Data representation .. 17
Figure 3: ASPIRE TDT Engine ... 18
Figure 4 Example of reader collision .. 23
Figure 5 BEG interfaces ... 25
Figure 6 EPCIS interfaces .. 29
Figure 7 ONS Architecture ... 31

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 47/56

Section 17 List of Tables

Table 1 Subscription parameters field’s explanation .. 41

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 48/56

Section 18 References and bibliography

[1] L. Schmidt, N. Mitton and D. Simplot-Ryl. Towards Unified Tag Data Translation for the

Internet of Things. In Wireless Communication Society, Vehicular Technology,
Information Theoryand Aerospace & Electronics Systems Technology (VITAE'09),
Aalborg, Denmark, 2009.

[2] A. Gallais and J. Carle. Performance Evaluation and Enhancement of Surface Coverage
Relay Protocol. In Proc. IFIP Networking'08 - Singapore, May 2008.

[3] A. Gallais, F. Ingelrest, J. Carle and D. Simplot-Ryl. Preserving Area Coverage in Sensor
Networks with a Realistic Physical Layer. In Proc. IEEE INFOCOM'07 - Anchorage,
Alaska, May 2007.

[4] A. Gallais, J. Carle, D. Simplot-Ryl and I. Stojmenovic Ensuring K-Coverage in Wireless
Sensor Networks with Realistic Physical Layers. In Proc. IEEE Sensors'06 - Daegu,
Korea, October 2006.

[5] Mihaela Cardei, My T. Thai, Yingshu Li, Weili Wu Energy-Efficient Target Coverage in
Wireless Sensor Networks Proceedings of 24th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), Vol. 3, Miami, FL, United States,
March, 1976—1984

[6] EPCglobal Low Level Reader Protocol standard -
http://www.epcglobalinc.org/standards/llrp

[7] LLRP-Toolkit - http://www.llrp.org/
[8] EPCglobal Application Level Events standard - http://www.epcglobalinc.org/standards/ale
[9] Fosstrak project - http://www.fosstrak.org/
[10] EPCglobal Electronic product Code Information Services (EPCIS) -

http://www.epcglobalinc.org/standards/epcis
[11] EPCglobal Object Name Service (ONS) - http://www.epcglobalinc.org/standards/ons
[12] NFC Forum Specification http://www.nfc-forum.org/specs/
[13] JSR 257: Contactless Communication API http://jcp.org/en/jsr/detail?id=257
[14] OSGi Specifications http://www.osgi.org/Specifications/HomePage
[15] Apache Felix iPOJO http://felix.apache.org/site/apache-felix-ipojo.html

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 49/56

Section 19 Appendix A – Filtering and Collection component (based on
Fosstrak implementation) user guide

19.1 Requirements

Hardware (minimum)

• P IV 1.2GHz or equivalent
• 512 MB Ram
• 50 MB free HD space

Software

• Java 1.6
• Tomcat 5.5 (or higher) or another server for web-services. (This guide assumes that

you use an Apache Tomcat server.)

19.2 Deployment

Copy the aspireRfidALE.war file which can be found at the ApireRFID Forge into the
webapps-folder of your server and start the server. The war-file will be deployed into a new
folder. Under windows you will usually find the webapps folder inside the tomcat installation
directory (c:\Program Files\Apache Tomcat\webapps). Under linux/unix this will depend on
your distribution. Some possible locations:

• /var/lib/tomcat/webapps
• /usr/local/lib/tomcat/webapps

The ALE server is now ready to be configured at your needs.

19.3 Configuration

This chapter will give a short overview to the configuration files available. These files allow
you to adapt the aspireALE to your needs. You will find these configuration files inside the
folder TOMCAT_DIRECTORY/webapps/aspireALEVERSION/WEB-INF/classes.

example: /var/lib/tomcat/webapps/aspireALE0.3.1m/WEB-INF/classes

InputGenerators.properties: This propertie-file is the main config for the ASPIRE ALE. You
will find it in the Folder WEB-INF/classes. It allows only one parameter to be changed,
namely the xml-file that provides the logical reader API with the initial readers available at
startup.

LogicalReaders.xml: This file specifies the readers that are loaded during startup of the ALE.

After a restart of the webserver the ASPIRE Filtering and Collection is available and ready to
accept clients.

19.4 Logical Reader Configurations

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 50/56

This guide shall introduce Logical Readers and how they can be declared to be used in the
Filtering and Collection server.

There are two different types of Logical Reader Definitions that should not be confused!

Dynamic Logical Reader Definitions: Dynamic Logical Reader Definitions are read by the
ALE Configurator. If you want to specify a logical reader at runtime through the Logical
Reader API you need to use a Dynamic Logical Reader.

Static Logical Reader Definitions: Static Logical Reader Definitions are read/written by the
Logical Reader Manager upon Filtering and Collection server deployment. They contain
additional information for the Logical Reader Manager.

19.4.1 LogicalReaders

LogicalReaders act always either as a connector between software and hardware or as a
connector between software and software. Therefore you need some parameters that
configure your LogicalReader at your needs. In the following we will give a short introduction
how you can setup the basic structure for a LogicalReader.

When you want to define your own LogicalReader through an xml-file you need to obey
some restrictions. Some of them are discussed here.

• The xml must have a valid encoding and version number
• example

<?xml version="1.0" encoding="UTF-8"?>

Dynamic Definition

• The xml must contain exactly one LRSpec definitions.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns3:LRSpec xmlns:ns2="urn:epcglobal:ale:wsdl:1"
 xmlns:ns3="urn:epcglobal:ale:xsd:1">
</ns3:LRSpec>

• You must define whether the reader is composite or not.
• The reader must contain at least the LRProperty of the ReaderType.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns3:LRSpec xmlns:ns2="urn:epcglobal:ale:wsdl:1"
 xmlns:ns3="urn:epcglobal:ale:xsd:1">
 <isComposite>false</isComposite>
 <readers/>
 <properties>
 <property>
 <name>ReaderType</name>
 <value> org.ow2.aspirerfid.ale.server.readers.hal.HALAdaptor</value>
 </property>
</ns3:LRSpec>

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 51/56

• If your reader is a composite reader, you must provide the list of the "subreaders".

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns3:LRSpec xmlns:ns2="urn:epcglobal:ale:wsdl:1"
 xmlns:ns3="urn:epcglobal:ale:xsd:1">
 <isComposite>true</isComposite>
 <readers>
 <reader>LogicalReader1</reader>
 </readers>
 <properties>
 <property>
 <name>ReaderType</name>
 <value> org.ow2.aspirerfid.ale.server.readers.CompositeReader</value>
 </property>
 </properties>
</ns3:LRSpec>

Static Definition

• The xml must contain exactly one LogicalReaders tag.

<?xml version="1.0" encoding="UTF-8"?>
<LogicalReaders xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="/resources/LogicalReaders.xsd">
</LogicalReaders>

• Whenever you define a LogicalReader you must specify an LRSpec and within that
LRSpec you must specify if this reader is composite or not.

<?xml version="1.0" encoding="UTF-8"?>
<LogicalReaders xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="/resources/LogicalReaders.xsd">
 <LogicalReader name="LogicalReader1">
 <LRSpec isComposite="false"
 readerType="org.ow2.aspirerfid.ale.server.readers.rp.RPAdaptor">
 </LRSpec>
 </LogicalReader>
</LogicalReaders>

• Make sure, that you use the name of a LogicalReader only once. The logical reader
API does not allow duplicates of LogicalReaders.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 52/56

Section 20 Appedix B – EPCIS (based on Fosstrak Implementation) users
guide

20.1 Requirements

Hardware (minimum)

• P IV 1.2GHz or equivalent
• 512 MB Ram
• 50 MB free HD space

Software

• Java 1.6
• Tomcat 5.5 (or higher) or another server for web-services. (This guide assumes that

you use an Apache Tomcat server.)
• MySQL 5.0 (or higher).

20.2 Deployment

This section includes a step-by-step tutorial describing how to set up your own EPCIS
repository.

In order to set up your own EPCIS repository, follow the step-by-step tutorial outlined below:
Make sure you have an Apache Tomcat servlet container (version 5.5 or higher) running. It
will be used to deploy and run the EPCIS repository web application. Download the latest
aspireRfidEpcisRepository distribution found at the ASPIRE's Forge and place the WAR file
contained in the archive in your Tomcat's webapps directory. After restarting Tomcat, the
WAR file will be exploded. Install a MySQL server (version 5.0 or higher). It will be used by
the EPCIS repository to store event data. Make sure that web applications deployed to
Tomcat can access your MySQL server by installing the MySQL Connector/J driver. This is
usually done by copying the mysql-connector-java--bin.jar into Tomcat's lib (version 6) or
common/lib (version 5.5) directory. Set up a MySQL database for the EPCIS repository to
use. Log into the MySQL Command Line Client as root and perform the following steps:

Create the database (in this example, we'll use epcis as the database name).

mysql> CREATE DATABASE epcis;

Create a user that is allowed access to the newly created database (in this example, we'll
use the user name epcis and password epcis).

mysql> GRANT SELECT, INSERT, UPDATE, DELETE ON
epcis.* TO epcis IDENTIFIED BY 'epcis';

Create the database schema by running the "epcis_schema.sql" script contained in the
archive you downloaded (located at : aspireRfidEpcisRepositoryWEB-INFclassessql folder).
(Make sure you are connected to the newly created database before running the script.)

mysql> USE epcis;

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 53/56

mysql> SOURCE <path-to-unpacked-download>/epcis_schema.sql

Optionally populate the repository with some sample data.

mysql> SOURCE <path-to-unpacked-download>/epcis_demo_data.sql

Configure the repository to connect to the newly created database. In a default installation of
Tomcat, the database connection settings can be found in
$TOMCAT_HOME/conf/Catalina/localhost/aspireRfidEpcisRepository.xml. The relevant
attributes that must be adjusted are username, password, and url.

<Resource
 name="jdbc/EPCISDB"
 type="javax.sql.DataSource"
 auth="Container"
 username="epcis"
 password="epcis"
 driverClassName="org.gjt.mm.mysql.Driver"
 url="jdbc:mysql://localhost:3306/epcis?autoReconnect=true">
</Resource>

If you used the default user name, password and database name from the examples above,
then you don't need to reconfigure anything here. If, however, you used different values, you
need to stop Tomcat, change the values and start Tomcat again.

Check if the application is running. In a default installation of Tomcat, the capture and query
interfaces will now be available at http://localhost:8080/aspireRfidEpcisRepository/capture
and http://localhost:8080/aspireRfidEpcisRepository/query respectively.

When you open the capture interface's URL in your web browser, you should see a short
information page similar to this:

This service captures EPCIS events sent to it using HTTP POST requests. The payload of
the HTTP POST request is expected to be an XML document conforming to the
EPCISDocument schema.

For further information refer to the xml schema files or check the Example in 'EPC
Information Services (EPCIS) Version 1.0 Specification', Section 9.6.

To also check if the query interface is set up correctly, point your browser to its URL and
append the string ?wsdl to it. The WSDL file of the query service should now be displayed in
your browser.

Proceed to the next sections to test your repository installation using one of our client
applications.

Check the application's log file in case of problems. The application's log is kept in
TOMCAT_HOME/logs/aspireRfidEpcisRepository.log. In case of problems with your own
EPCIS repository instance, this is the first place to look for information about errors or
specific exceptions thrown by the application.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 54/56

20.3 Runtime Configuration of your EPCIS Repository

In this section, we describe the properties you can use to configure AspireRFID EPCIS
repository implementation.

Basically there are three coniguration files relevant to the user of the application:
application.properties, context.xml, and log4j.properties

application.properties The application.properties file is located in the application's class path
at TOMCAT_HOME/webapps/aspireRfidEpcisRepository/WEB-INF/classes. It contains the
basic configuration directives that control the repository's behaviour when processing queries
and events. This file looks as follows:

application.properties - various properties (loaded at runtime) which are used

 1. to configure the behaviour of the epcis-repository application
 2. the version of this service, as exposed by getVendorVersion (must be valid URI)

service.version=http://wiki.aspire.objectweb.org/xwiki/bin/view/Main.Documentation/EpcisRe
pository

 1. maximum number of result rows allowed for a single query before a
 2. QueryTooLarge exception is raised

maxQueryResultRows=1000

 1. maximum time in milliseconds to wait for a query to finish before a
 2. QueryTooComplex exception is raised

maxQueryExecutionTime=20000

 1. whether to allow inserting new vocabularies when they are missing in the db

insertMissingVoc=true

 1. the schedule used to check for trigger conditions - the values provided here
 2. are parsed into a query schedule which is used to periodically check whether
 3. incoming events contain a specific trigger URI

trigger.condition.check.sec=0,20,40
trigger.condition.check.min=

 1. whether to allow resetting the database via a HTTP POST 'dbReset' parameter

dbResetAllowed=false
dbResetScript=/sql/reset_epcis_with_demo_data.sql

 1. the location of the EPCglobal EPCIS schema

epcisSchemaFile=/wsdl/EPCglobal-epcis-1_0.xsd

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 55/56

 1. the location of the EPCglobal EPCIS MasterData schema(nkef)

epcisMasterDataSchemaFile=/wsdl/EPCglobal-epcis-masterdata-1_0.xsd

 1. whether to trust a certificate whose certificate chain cannot be validated
 2. when delivering results via Query Callback Interface

trustAllCertificates=false

 1. the name of the JNDI datasource holding the connection to the database

jndi.datasource.name=java:comp/env/jdbc/EPCISDB

We would like to outline one specific feature: The AspireRFID EPCIS implementation
includes the option to specify an SQL script (see dbResetScript property) and trigger the
execution of this script remotely. This behaviour is not part of the EPCIS specification, but
can be used to remotely initialize a repository to a predefined state. The script is triggered by
sending an HTTP POST request to the capture interface with the HTTP parameter dbReset
set to true. Please note that this feature is not protected by any security mechanisms. It is
intended for internal use only and therefore disabled by default (future versions may provide
more sophisticated remote management capabilities).

context.xml The context.xml file includes the configuration parameters for the database
connection and looks as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<Context reloadable="true">

<Resource name="jdbc/EPCISDB" type="javax.sql.DataSource" auth="Container"
username="epcis" password="epcis" driverClassName="org.gjt.mm.mysql.Driver"
defaultAutoCommit="false" url="jdbc:mysql://localhost:3306/epcis?autoReconnect=true">
</Resource>

</Context>

This file is located at TOMCAT_HOME/webapps/aspireRfidEpcisRepository/META-INF/.
However, as indicated before, Tomcat reads these configuration settings from the
conf/Catalina/localhost/aspireRfidEpcisRepository.xml file once your application has been
deployed.

log4j.properties This file is also located in the application's class path at
TOMCAT_HOME/webapps/aspireRfidEpcisRepository/WEB-INF/classes. The properties
defined here affect the logging behaviour of the application. The log file is written to
TOMCAT_HOME/logs/aspireRfidEpcisRepository.log. By default, it only includes log
statements of level INFO and higher.

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 56/56

Section 21 Appendix C – Connector component Users Guide and Developer
Guide

21.1 Deployment

Both connector components are designed to work in a Java application server (e.g. tomcat)
so they are provided as a web archive (i.e. war). The connector client can also be embedded
within a client application if required. This means that it can function either within a web
container or in standalone mode, functionality that can be selected through configuration
files. Instructions on how to deploy the provided war files are dependent on the application
server that you may choose to use. For the latest version of tomcat, all you have to do is
place a copy of the war files within the webapps directory located at the tomcat installation
folder.

21.2 Configuration

Configuration files exist within the war files under the folder props with the name
application.properties. You can either edit them before deployment or after deployment
based on your needs and on the application server that you are using. Following we will
describe the configuration options for each connector component.

21.2.1 Connector server

This is the configuration file of the connector server. We will explain each one of the
configuration options.

callbackDestinationUrl=http://localhost:8899
epcisQueryIfceUrl=http://localhost:8080/epcis/query
epcisCaptureIfceUrl=http://localhost:8080/epcis/capture
queryName=SimpleEventQuery
timeDifferenceFromUTC=+02:00

callbackDestinationUrl: This generally does not need to be changed. It defines a TCP
server where query subscriptions to the EPCIS repository will return their results to. If this is
defined incorrectly the connector will not be able to receive any query results from the EPCIS
repository.

epcisQueryIfceUrl: This property holds the location of the EPCIS query interface that we are
interested in getting information from, as defined by the EPCglobal EPCIS standard

epcisCaptureIfceUrl: This is the URL of location of the EPCIS capture interface.

queryName: The only available query name is the SimpleEventQuery. Unless another query
is implemented at the EPCIS query interface, this should not be changed.

timeDifferenceFromUTC: This is the time difference of the local time from the UTC or GMT.
It is required for the generation of specific EPCIS events. The format is ±HH:MM.

21.2.2 Connector client

Contract: 215417
Deliverable report – WP3 / D3.4a

ID: D3.4a_Core ASPIRE Middleware Infrastructure (Interim
Version).doc

Date: 20 July 2009

Revision: 1.3 Security: Public
 Page 57/57

connectorServerUrl = http://localhost:8080/Connector-1.0/connector

connectorServerUrl: The endpoint of the connector server. The first part, i.e.
http://localhost:8080/Connector-1.0 is the location where the connector server has been
deployed. The second part, i.e. connector is the web service that the client uses to
communicate with the server and subscribe for new queries.

isConnectorClientStandaloneModeOn: Possible values: true or false. This defines whether
the connector client is deployed as a standalone web application or is embedded within a
client application. If this property is set to false and the war file is deployed to an application
server, an embedded servlet will be used to deploy the web services of the connector client.
On the other hand, if this property is set to true, an embedded trivial application server will be
opened by the connector client, on the port defined by the standaloneConnectorClientPort
property, and the web service will be deployed on this server.

