
ASPIRE FP7 215417

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the ASPIRE Consortium. Neither

this document nor the information contained herein shall be used, duplicated or
communicated by any means to any third party, in whole or in parts, except with prior written

consent of the ASPIRE consortium.

Collaborative Project

ASPIRE

Advanced Sensors and lightweight Programmable
middleware for Innovative Rfid Enterprise applications

FP7 Contract: ICT-215417-CP

WP3 – RFID Middleware Infrastructure

Public report - Deliverable

Data Collection, Filtering and Application Level Events

Due date of deliverable: M15
Actual Submission date: 30/4/09

Deliverable ID: WP3/D3.3
Deliverable Title: Data Collection, Filtering and Application Level Events
Responsible partner: AAU

Contributors:

Nikos Kefalakis (AIT)
Nektarios Leontiadis (AIT)
John Soldatos (AIT)
Nathalie Mitton (INRIA)
Loïc Schmidt (INRIA)
David Simplot-Ryl (INRIA)
Ramiro Robles (IT)
Didier Donsez (UJF)
Kiev Gama (UJF)
Lionel Touseau (UJF)
Sofyan M Yousaf (IT)

Estimated Indicative
Person Months: 28

Start Date of the Project: 1 January 2008 Duration: 36 Months

ASPIRE FP7 215417

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the ASPIRE Consortium. Neither

this document nor the information contained herein shall be used, duplicated or
communicated by any means to any third party, in whole or in parts, except with prior written

consent of the ASPIRE consortium.

Revision: 0.11
Dissemination Level: PU

Document Information

Document Name: Data Collection, Filtering and Application Level Events
Document ID: WP3/D3.3
Revision: 0.11
Revision Date: 29 April 2009
Author: AAU
Security: PU

Approvals

 Name Organization Date Visa

Coordinator Neeli Rashmi Prasad CTIF-AAU

Technical
Coordinator John Soldatos AIT

Quality Manager Anne Bisgaard Pors CTIF-AAU

Reviewers

Name Organization Date Comments Visa

Mathieu DAVID AAU 26 Mar 09 Needs additional work
and revisions

Mathieu DAVID AAU 15 Apr 09 Close to final version
Consider comments

Sofyan M Yousaf OSI 29 Apr 09 Consider Comments

Document history

Revision Date Modification Authors
0.1 25 Feb 09 First draft Nikos Kefalakis
0.2 20 Mar 09 Section 9, augmented Section 3 Nathalie Mitton

0.3 24 Mar 09 Section 1, Section 2, augmented Section
3 Ramiro Samano Robles

0.4 26 Mar 09 Augmented Section 9 Sofyan M. Yousuf
0.5 27 Mar 09 augmented Section 2 Ramiro Samano Robles
0.6 02 Apr 09 Appendix I and II, Section 6, Section 7, Nikos Kefalakis

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 3/58

augmented Section 2
0.7 09 Apr 09 Section 10 Ramiro Samano Robles
0.8 20 Apr 09 Insertion of ALE extensions on Appendix I Didier Donsez and Kiev Gama

0.9 21 Apr 09 Harmonization of the document and Re-
Ordering of some sections

Nikos Kefalakis, John Soldatos

0.10 29 Apr 09 Minor Corrections/Additions at Section 3,
Section 4 and Section 7 Nikos Kefalakis

0.11 29 Apr 09 Section 8 Didier Donsez, Kiev Gama & Lionel
Touseau

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 4/58

Content

Section 1 Executive Summary .. 6
Section 2 Introduction ... 8
Section 3 Scope of AspireRFID F&C Server ... 15

3.1 Application Level Events ... 15
3.2 Data Collection ... 15
3.3 Filtering ... 15
3.4 F&C Interfaces .. 15
3.5 F&C Datatypes .. 18
3.6 F&C Core Engine (Event Cycles) .. 18
3.7 F&C ECSpecs & ECReports... 18
3.8 Logical Readers .. 18

Section 4 ASPIRE Enhancements and Bug Fixes over Licensed Fosstrak modules . 20
Section 5 ALE Extensions .. 22
Section 6 ALE Server Configurator tools .. 24

6.1 ECSpec Configurator ... 25
6.2 LRSpec Configurator ... 26

Section 7 F&C Practical Use Case Examples and Implementation 28
7.1 Use case 1: Specific family’s products added to a shelf 28
7.2 Use case 2: Specific family’s products removed from a shelf 30
7.3 Use case 3: Specific family’s products’ grouping and counting 32

Section 8 Aspire Middleware modularity and dynamic provisioning using OSGi 35
8.1 The OSGi dynamic service platform ... 35
8.2 The OSGi dynamic provisioning ... 35
8.3 The OSGi WireAdmin services .. 36
8.4 Service Oriented Component Models for the OSGi platform 36

Section 9 Lower Level Filtering Investigations ... 38
Section 10 Conclusions .. 41
Section 11 List of Figures ... 42
Section 12 List of Tables ... 43
Section 13 List of Acronyms .. 44
Section 14 References and bibliography .. 45

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 5/58

APPENDIX I – ALE Server Operation (EPC-ALE) and Licensed Accada/FossTrak
Implementation ... 47

ALE Built-in Datatypes and Formats (Accada/Fosstrak Implementation) 47
ALE Reading API Implementation (Licensed Accada/Fosstrak Implementation) 48

Reading API Data Types .. 48
ECSpec .. 48
ECReports .. 49

ALECallback Interface .. 50

ALE Logical Reader API (Licensed Accada/Fosstrak Implementation) 51
ALE EventCycle (Licensed Accada/Fosstrak Implementation) 52

Overview... 52
Implementation ... 52
Life Cycle .. 52

ALE Reader Interfaces Architecture ... 54
Low Level Reader Protocol Interface (AspireRfid Implementation) 54
Reader Protocol Interface (Accada/Fosstrak Implementation) 55

APENDIX II ASPIRE ALE API Implementation Status ... 57
Built-in Fieldnames, Datatypes, and Formats.. 57
Reading API .. 57
Logical Reader API ... 58

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 6/58

Section 1 Executive Summary

This deliverable describes three crucial architectural functionalities and modules
of the ASPIRE middleware platform: Data collection, filtering and application level
events. The data collection functionality refers to the ability to capture and/or
aggregate the data coming from different RFID reader(s), whereas filtering aims
to select only that part of the information that is relevant for upper layers. Finally
the application level event (ALE) functionality provides the actual translation
from a low level RFID event into a higher level language relevant to upper layers.
The present deliverable accompanies the prototype implementation of these
functionalities as part of the F&C server of the AspireRfid project. The prototype
implementation is available for download at http://wiki.aspire.ow2.org/, while it
is also provided as part of CD-ROM that comes with this deliverable. Note the
core part of the deliverable is the prototype implementation, while the present
report can be seen as a complementary documentary report. Additional
documentation is part of the project’s Wiki and forge.

After going through this deliverable the reader will have a detailed picture of the
aforementioned functionalities, the status of implementation of their different
features in the ASPIRE architecture, the modules/servers that host them and the
interfaces with the requesting clients or upper layer modules. Hence, this report
has a dual role: (a) for end-users and integrator it presents and illustrates
(based on examples) the list of features that they can use as part of the F&C
implementation and (b) for developers and open source contributors it reveals
the gaps that need to be filled based on additional contributions. It is worth
mentioning that although the implementation was made following an EPC
(Electronic Product Code)-like architecture, ASPIRE middleware is potentially
applicable to other non-standardized readers thanks to a Hardware abstraction
layer (HAL) which is able to translate their protocols into ASPIRE semantics.

ASPIRE is developing an innovative royalty free middleware platform. This
middleware platform is the primary target of the open source “AspireRfid” project
(http://wiki.aspire.ow2.org/), which has been recently established in the scope
of the OW2 community. In the scope of large scale deployments, RFID systems
generate an enormous number of object reads. Filtering those reads is a key
prerequisite to implementing non-trivial RFID applications. This is because RFID
applications need to concentrate on and receive certain application level events
(e.g., the appearance of an object, the disappearance of an object), while at the
same time ignoring reads that represent non-actionable “noise.” To balance the
cost and performance of this with the need for clear accountability and
interoperability of the various parts, the design of the ASPIRE middleware seeks
to:

• Drive as much filtering and counting of reads as low as possible in the
architecture.

• Minimize the amount of “business logic” embedded in the Tags.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 7/58

The Filtering and Collection (F&C) Middleware is intended to facilitate these
objectives by providing a flexible interface (ALE (Application Level Events)
interface) to a standard set of accumulation, filtering, and counting operations
that produce “reports” in response to client “requests.” The client will be
responsible for interpreting and acting on the meaning of the report. Depending
on the target deployment (see Middleware Building Blocks and ASPIRE
applications) the client of the ALE interface may be a traditional “enterprise
application,” or it may be new software designed expressly to carry out an RFID-
enabled business process but which operates at a higher level than the
“middleware” that implements the ALE interface. In the scope of the ASPIRE
architecture (described in Deliverable D2.3), the Business Event Generation
(BEG) middleware would naturally consume the results of ALE filtering. However,
there might be deployment scenarios where clients will interface directly to the
ALE filtered streams of RFID data.
The ASPIRE (F&C) Middleware, (which is part of the AspireRfid Open Source
Project, available at http://wiki.aspire.ow2.org/) has been implemented based on
the licensing of the FossTrak EPC-ALE implementation under the LGPL license. On
top of this licensed middleware ASPIRE partners have implemented a number of
extensions, customizations and bug fixes. The later extensions involve the
implementation of LLRP (Low Level Reader Protocol) connectors for bridging the
F&C middleware with LLRP compliant readers, the addition of sensor extensions,
as well as the porting of the middleware to lightweight OSGi (Open Service
Gateway Interface) containers with a view to enabling modular and fine-grained
control over the F&C servers. These extensions and customizations render the
F&C middleware compliant to the ASPIRE architecture. In addition, ASPIRE has
implemented a tool facility enabling the flexible configuration of the F&C server.
The above extensions and tools are detailed in this deliverable. For completeness
reasons, F&C features supported as part of the FossTrak/Accada implementation
are also included in an Appendix.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 8/58

Section 2 Introduction

Despite the simplicity of the operational principles of RFID technology (i.e. tags
responding to readers requests), the design of a complete RFID system
encompasses complex interactions not only between different layers of the OSI
(Open Systems Interconnection) model, but it also involves several market,
privacy, security, and business issues. This heterogeneous landscape calls for a
middleware platform which is able to consider all these complex variables in a
flexible and modular way, which is able to provide a starting point for future
upgrades and innovations, and which considerably reduces the implementation
costs of RFID solutions.

The main goal of ASPIRE is to develop a lightweight, innovative, royalty free,
open source and programmable RFID middleware platform that will facilitate
European companies in general and SMEs in particular to develop, deploy and
evolve RFID solutions. In-line with its open-source nature this platform aims at
offering immense flexibility and maximum freedom to potential developers and
deployers of RFID solutions. This versatility includes the freedom of choice
associated with the RFID hardware (notably tags and interrogators) which will
support the solution. The ASPIRE middleware solution is developed as part of the
AspireRfid Open Source Project, which is available for download at:
http://wiki.aspire.ow2.org/.

This deliverable is concerned with three of the main functionalities of the ASPIRE
middleware platform: Data collection, filtering and application level events. It
also describes the modules/servers that implement such functionalities and the
interfaces between such modules and clients or upper layer applications that are
subscribed to their services. However, before going into the details of software
implementation this section enlists the main components and functionalities of a
generic RFID system according to the work in [10] where the authors make an
exhaustive analysis of RFID interfaces and functionalities using a non-EPC
framework. The objectives of this section are the following: to identify the
functionalities tackled by this deliverable within an entire RFID system, to devise
which components or hardware modules may host them, to map them into the
EPC-architecture and set of standards and finally relate them to the ASPIRE
architecture defined in previous documents. The section concludes with a
description of the contents of this deliverable and its organization.

Note that the core of Deliverable D3.3 is the prototype implementation of the
AspireRfid F&C server. The present report aims at accompany this deliverable,
serving as complementary documentation. Please note that additional
documentation is available at the AspireRfid Wiki portion of the F&C server at:
http://wiki.aspire.ow2.org/.

An RFID system consists of tags, readers, controller appliances and application
servers. The main functionalities of an RFID system can then be distributed
among these hardware modules depending on the architecture selected or

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 9/58

application targeted. According to [10] the functionalities of an RFID system are
divided in four categories enlisted below:

1. Base service set (BSS))”Over the air”

• Transponder singulation. Collects the identification numbers (ID) of
(selected) transponders in range.

• Transponder ID programming. Writes identification numbers to
transponders.

• Transponder Memory Access. Reads from and writes to the general
purpose memory on a transponder.

• Transponder Deactivation. Disables the transponder for privacy reasons.

2. Configuration service set (CSS)
• Network Interface configuration. Discovers and sets reader networking

parameters and identity, e.g. the IP address.
• Firmware management. Distribute and manage firmware version on

readers
• Antenna, Tag population and memory selection. Specify reader antennas

and tag population to be inventoried. In case of tag memory access,
specifies memory fields to be accessed.

• Base Service set scheduling. Sets how different BSS services, such as tag
inventory, access, and deactivation, are triggered and stopped.

• RF transmitter configuration. Sets transmit channel, hop sequence, and
transmit power for readers.

• Air Interface Protocol Configuration. Configures timing, coding and
modulation parameter of a specific air interface protocol on the readers.

3. Monitoring service set (MSS)
• Network connection monitoring. Check that the reader can communicate

captured RFID data over the network.
• RF environment monitoring. Check RF noise and interference levels to

safeguard reliable identification operation.
• Reader Monitoring. Check that the reader is up and running and executing

BSS as configured for example via monitoring the number of successful/-
failed read and write operations.

4. Data processing service set (DPSS)
• Filtering. Removes unwanted tag identifiers from the set of tag identifiers

captured.
• Aggregation. Computes aggregates in the time domain (entry/exit events)

and the space domain (across reader antennas and readers) and
generates the corresponding ’super’-events.

• Identifier Translation. Translates between different representations of the
identifier.

• Persistent storage. Stores RFID data captured for future application
requests.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 10/58

• Reliable messaging. Allow RFID data to be delivered reliably in the
presence of software component, system and network failures.

• Location/Movement estimation. Detects false positive reads of far-away
tags that are outside the ’typical’ read range and estimate the direction of
movement.

• Application Logic execution. Interprets the RFID data captured in an
application context and generate the corresponding application events

Some of the above functionalities are clearly hosted by specific hardware
modules. For example, the base service set (BSS) of functionalities, which is
related to the direct interaction with tags, is always hosted by the reader or
interrogator. In comparison, configuration and monitoring services are always
hosted by the controller appliance or server. Conversely, the data processing
service functionalities can be distributed among any of the hardware modules
depending on the selected RFID architecture. Although two main architectures
can be clearly identified, one centralized and another decentralized, hybrid
versions combining bits of both of them might also exist. The centralized and
decentralized approaches are shown in Figure 1 and 2, respectively. These
architectures also imply different degrees of complexity at the reader and at the
central controller appliance. Since ASPIRE aims at reducing the processing
complexity at the hardware reader level, it will mainly adopt a centralized
architecture. This also implies that the filtering and collection functionalities will
be mainly hosted in a controller appliance which is commonly implemented in a
server or groups of servers. The aim of this filtering and collection functionality
server is therefore to collect raw RFID data coming from different readers, filter
those parts of information that are irrelevant to upper layers and to translate
them into higher level semantics understandable to application servers or to
other users of the F&C server.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 11/58

Figure 1 RFID system configuration with centralized architecture

Figure 2 RFID system configuration with decentralized architecture

The EPC set of standards have been created with the aim of providing RFID
application developers a common reference framework that will help in the fast
adoption of RFID in current markets. The EPC standards consists of the definition
of the radio interface between readers and tags (Gen 1 or Gen 2 UHF standards),
reader protocols for the management and configuration of readers or

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 12/58

interrogators (RM –reader management-, Reader Protocol –RP- and Low Level
Reader Protocol –LLRP-), and the standards for the interaction with upper layer
procedures (Application Level Events –ALE- and Electronic Product Code
Information Services –EPCIS-). The EPC network roles and functionalities can be
observed in Figure 3, where data and device management functions are mainly
comprised by the reader protocols, the filtering and collection server and the
Application level event standard. In comparison, the data interpretation
functionalities are mainly carried out by the EPCIS standard.

Figure 3 EPC Network roles and interfaces

Let us now relate the EPC network architecture and standards with the RFID
functionalities previously explained. The following figure summarizes the
functionalities that each EPC specification carries out.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 13/58

Figure 4 High-level overview of the services supported by the EPCglobal specifications [10]

This figure shows that the main standards related to the filtering, collection and
application level event are the LLRP (Low level reading protocol), RP (reader
protocol) and ALE (application level event). Their approach to such functionalities
is, however, different. Whilst LLRP and RP are mainly concerned with the
interface between the middleware platform and the reader, the ALE specification
is concerned with the interaction between the middleware and business related
servers. LLRP is configuration, monitoring and some limited data processing
functionalities. In comparison RP comprises limited configuration capabilities and
better data processing capabilities. Finally, ALE also deals with configuration and
data processing capabilities.

Since the ASPIRE architecture is mainly based on a centralized EPC architecture,
the filtering and collection capabilities will be mainly concentrated in a dedicated
server called ALE or F&C server, while some limited low level filtering capabilities
will be left as an optional feature to deploy at the reader level. This server
interacts with a heterogeneous reader landscape, thus being able to interpret
LLRP, RP and HAL messages, with a business event generator through an
HTTP/TCP interface and with the management platform through a SOAP/HTTP
interface. Details are given in the main body of the deliverable.

It is worth to note that as codebase for developing the AspireRFID Filtering and
Collection (F&C or ALE) module the OSS (Open Source Software) Fosstrak [1]
was licensed and used which was extended and bug fixed to comply to the
ASPIRE’s Architecture Specifications. The present document focuses on the
illustration of features, which have been entirely developed in the scope of
AspireRfid, while the FossTrak implementation is detailed in an Appendix

This deliverable corresponds to the parts of the ASPIRE middleware
infrastructure that will perform collection and filtering of tag streams, along with
constructions of application level events. The present document is the report,
whereas the Implementation and Documentation can be found at the AspireRFID
Forge (http://forge.ow2.org/projects/aspire) and Wiki

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 14/58

(http://wiki.aspire.ow2.org/) page respectively. The executable final version of
the F&C implementation (aspireRfidALE[version].zip) and the ALE Server
Configurator (AspireRfidIdeToolCollection[version]) can be found at the
AspireRFID Forge Files page
(http://forge.ow2.org/project/showfiles.php?group_id=324), the source code of
the implementations can be found at the AspireRFID SVN
(http://forge.ow2.org/plugins/scmsvn/index.php?group_id=324). Directions on
how to use the AspireRFID F&C module and ALE Server Configurator can be
found at the AspireRFID Wiki documentation page
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation.AspireIDE/AleSer
verConfigurator and
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation.AspireIDE/AleSer
verConfigurator respectively.

The structure of the contents of this deliverable is as follows: Section 3 presents
the general scope of the ALE or F&C server in the context of the ASPIRE
architecture and a description of its modes of operation. Section 4 presents the
extensions and fixes carried out by AspireRfid over the FossTrak implementation
(http://www.fosstrak.org), while Section 5 illustrates the ALE sensor extensions
developed in the scope of AspireRfid. Section 6 describes the configuration tools
of the servers, which have been implemented and are available as part of the
AspireRfid project. Section 7 presents few complete implementation examples of
the F&C functionally in order to allow the reader to fully understand the
operation and the importance of the F&C server. Finally, Section 8 presents the
results of some preliminary low level reading investigations and Section 9 draws
conclusions.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 15/58

Section 3 Scope of AspireRFID F&C Server

3.1 Application Level Events

Application Level Events (ALE) is a software interface through which client
applications may interact with filtered, consolidated EPC data and related data
from a variety of sources. In particular, ALE provides a convenient way for
applications to read and write RFID tags, interacting with one or more RFID
reader devices and is implemented at the AspireRFID filtering and collection
module.

ALE provides an especially convenient programming model for application
writers. Using ALE, an application makes a high-level description of what data it
wants to read from or write to tags, over what period of time, and with what
filtering to select particular tags. The ALE implementation then finds the most
appropriate way to fulfill such requests, interacting with RFID readers or other
devices as necessary. Application writers are shielded from details of device
configuration and management, and may rely upon the ALE implementation to
handle data conversions including those specified by EPC and ISO data
standards. [16]

3.2 Data Collection

The ASPIRE F&C middleware module must represent a single interface to the
potentially large number of readers that make up an RFID system deployment.
This allows applications to subscribe to a particular pre-defined specification,
which is then used along with the Logical Reader (LR) definition to configure the
corresponding reader devices using the underlying reader access mechanisms.
Once the readers capture relevant tag data they notify the middleware which
combines and aggregates the data arriving from different readers in a report that
is sent according to a pre-determined schedule to the subscribed applications.

3.3 Filtering

Since the middleware receives data from multiple readers, it provides specific
filtering functionality depending on the different pre-defined specifications. So
redundant events from different readers observing the same location are not
included to the dispatched report accomplishing the reduction of filtering and
aggregation required for the registered application to interpret the captured RFID
data.

3.4 F&C Interfaces

The ASPIRE F&C middleware must implement one interface to communicate with
the different types of readers and two other interfaces to communicate with
upstream layers (i.e. BEG (Business Event Generation) module and ALE Server
Configurator as shown in Figure 5). In particular:

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 16/58

• One interface is needed for transporting the RFID data. The TCP/HTTP
protocol therefore is adopted to this end. The transport interface must
enable BEG and/or applications to receive RFID data either in a “push” or
in a “pull” fashion (either by subscribing for or by requesting a report).
This interface will be important for the support of the information flow of
RFID data from tags and readers to the business repository.

• A second interface (based on the SOAP and/or other XML messaging
protocols) for managing the F&C server and controlling its operations.
This interface will not target the transport of RFID readings. Rather it will
allow definition of reading specifications, subscription of clients to the
results of particular filtering specification, as well as definition and
management of logical readers. This interface will be used by all the
ASPIRE management and development tools, which will need to configure
and/or program the F&C server operation.

The figure below shows the ASPIRE middleware architecture and the interactions
of the filtering and collection server with the other modules of the architecture.

Figure 5 Overview of the AspireRfid Filtering, Collection and ALE solution illustrating

components licensed by FossTrak, as well as components entirely developed by AspireRfid

The ALE interface revolves around client requests and the corresponding reports
that are produced. Requests can work in:

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 17/58

• Immediate mode, in which information is reported on a one-time basis at the
time of the request

• Recurring mode, in which information is reported repeatedly whenever an
event is detected or at a specified time interval. The results reported in
response to a request can be directed back to the requesting client or to a
“third party” specified by the requestor.

• Poll Mode: The Poll mode of interaction with an ALE server is similar to
Immediate, except the ALE client defines the ECSpec on the server ahead of
time. It gives the ECSpec a name which allows the ALE client to request data
from it using the name instead of sending the ECSpec every time.

• Subscribe Mode: Defines the ECSpec ahead of time like Poll. It does not
require the ALE client to continually request data from the server. Instead the
ALE client adds a subscription to the ECSpec that the ALE server
communicates. One example of an ALE subscription would be an ALE client
that opens a TCP port that the server can connect to and send reports
through it.

The available request modes are shown at the pictures below:
• Subscribe Mode: Asynchronous reports from a standing request

Figure 6 Asynchronous reports from a standing request [15]

• ALE XPoll Mode: Synchronous (on-demand) report from a standing request

Figure 7 On-demand report from a standing request [15]

• Immediate Mode: Synchronous report from one-time request

Figure 8: Synchronous report from one-time request [15]

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 18/58

3.5 F&C Datatypes

The primary data types associated with the ALE API are:

• Filtering Specifications (e.g., ECSpec according to EPC-ALE [2]), which
specify how an event cycle is calculated

• Reports, (e.g., ECReports according to standard [2]), which contains one
or more reports generated from a single activation of a filtering
specification. Report instances must be provided in both a “pull” and
“push” manner. As a result, a related subscription mechanism needs to be
implemented.

3.6 F&C Core Engine (Event Cycles)

An event cycle or command cycle is an interval of time over which an ALE
Implementation carries out interactions with one or more Readers on behalf of
an ALE client.

An event cycle is the smallest unit of interaction between an ALE client and an
ALE implementation through the ALE Reading API. An event cycle is an interval
of time during which Tags are read in the Reading API. A command cycle is the
smallest unit of interaction between an ALE client and an ALE implementation
through the ALE Writing API. A command cycle is an interval of time during
which Tags are written, or other operations performed upon them, in the Writing
API.

3.7 F&C ECSpecs & ECReports
Filtering specifications describe event cycles, along with one or more reports
which are to be generated from it. Filtering specifications must typically contain:
• A list of logical readers whose read cycles are to be included in the event

cycle.
• A specification of how the boundaries of event cycles are to be determined.
• A list of specifications, each describing a report to be generated from this

event cycle.
Note that filtering specifications will generate event cycles as long as there is at
least one subscriber to the server.

Reports are the output of an event cycle. Report instances contain a list of
reports, each one corresponding to a filtering specification. Moreover, report
instances include a number of metadata that provides useful information about
the event cycle.

3.8 Logical Readers
Prerequisite to define a filtering specification is the definition of the Logical
reader(s). To this end, an application programming interface (API) enabling
clients to define logical reader names used with the APIs that access the tags
(namely Reading API and Writing API), must be defined. The logical reader API
allows also the manipulation of configuration properties associated with logical
reader names.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 19/58

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 20/58

Section 4 ASPIRE Enhancements and Bug Fixes over Licensed Fosstrak

modules

AspireRFID for its Filtering and Collection module has licensed and used as its
codebase the Open Source project Accada/Fosstrak [1] which was extended and
bug fixed to comply to the ASPIRE’s Architecture Specifications. The main bug
fixes and added features are mentioned below:

• Added EPC LLRP Interface (to support LLRP compliant RFID readers) as
shown at Figure 5 above.

• The EPC ALE specifications [2] requires for the Filtering and Collection
module to be able to include at its reports the following Tag format types:
Tag, RawHex, RawDecimal and EPC. So exept from EPC format that was
supported the following changes where made to support the rest of them.

o Added functions for converting byte[] Tag IDs to raw Decimal, raw
HEX and tagURI formats so as the produced ECReport to be able to
include these Tag format types.

o Add check at the Pattern Class method isMember(String
tagPureURI, String tagURI) to check whether the requested pattern
from the ECSpec is pure id pattern or not so as to use the right Tag
format (Pure URI or Tag URI).

o Add captured tags to the Tag Report Group list as:
 Raw Decimal
 Tag URI
 And Raw Hex

• For now the Filtering and collection module supports only GID-96, SGTIN-
64 and SSCC-64 Tag type. For extending the Filtering and Collection
server we added SGTIN-96, SGTIN-198, SSCC-96, GSGLN-96, GSGLN-
195, GRAI-96, GRAI-170, GIAI-96, GIAI-202, USDOD-96, GID, SGTIN,
SSCC, GSGLN, GRAI, GIAI, USDOD to the “PatternType” Object for future
support of the rest EPC Tag types Error! Reference source not found..

• Add third field check to the URI pattern (Range is not allowed in pure id
patterns as required from the ALE Specifications [2]).

• Clear the faulty read tags (e.g. Invalid URI pattern) in the
ECSpecValidationExceptionResponse and the
ImplementationExceptionResponse so as Filtering and Collection server
implementation wont "stuck" if an exception occur. All previous tags will
be deleted so ADDITIONS and DELETIONS will be reset.

• At EventCycle.run() corrected the faulty use of “lastEventCycleTags=tags”
which was replacing the hole list of the Tags read with the new list of Tags
read and changed into “lastEventCycleTags.addAll(tags)” so as not to lose
the previous collected tags before the event cycle finish and the Tags are
reported.

• Fixed faulty behavior when using ADDITONS and DELETIONS in the same
ECSpec (previously if the same tag group was used in two Report Specs,
one for ADDITONS one for DELETIONS, it was adding and deleting tag ids
at the ECReports arbitrarily).

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 21/58

• Added the ability to clear the ADDITONS and DELETIONS history at
defined amount of event cycles as specified at the EPC ALE 1.1
specifications [2].

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 22/58

Section 5 ALE Extensions

The ALE specification has an extensibility mechanism which allows sending
additional information in ALE reports by means of extension elements, as shown
in the example of Table 1. Such type of additional information should be stored
in the EPCIS. For the purpose of ASPIRE, different types of information will be
sent in the ALE reports, such as:

• Sensor readings.
• Raw byte array of information read from the tag’s memory
• General purpose information (the URL of a resource, textual info, etc)

Table 1: ALE extension example

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ECReports totalMilliseconds="5000" terminationCondition="DURATION"
specName="ECSpec_additions" date="2009-03-14T16:24:55.500+02:00" ALEID="ETHZ-
ALE443245070" xmlns:ns2="urn:epcglobal:ale:xsd:1">
 <reports>
 <report reportName="extendedReport">
 <group>
 <groupList>
 <member>
 <epc>urn:epc:id:gid:145.255.487</epc>
 <tag>urn:epc:tag:gid-96:145.255.487</tag>

 <extension>
 <gpsCoordinates>46.713753475,4.515625</gpsCoordinates>
 <measurementList>
 <measurement>
 <value>1020.0</value>
 <error>0.0</error>
 <unit>Pa</unit>
 <timestamp>1239888391419</timestamp>
 <applicationName>pressure</applicationName>
 <sensorId>pressuresensor</sensorId>
 </measurement>
 <measurement>
 <value>300</value>
 <error>0.0</error>
 <unit>K</unit>
 <timestamp>1239888391419</timestamp>
 <applicationName>temperature</applicationName>
 <sensorId>tempsensor</sensorId>
 </measurement>
 </measurementList>

 </extension>
 </member>
 </groupList>
 </group>
 </report>
 </reports>
</ns2:ECReports>

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 23/58

In the case of general purpose information, it has the motivation of letting the
information be specific to the applications using ASPIRE middleware. An
extensive list of different use cases can illustrate such usage, but only two such
use cases are described here. For instance, in the context of the adaptation of
NFC devices and applications, one may have survey answers (concerning the
object identified by an RFID tag) to be sent along with the tag ID read. Another
example is in the context of a warehouse application that can take snapshots
when products on a pallet are scanned. The picture files can be sent along as
general information in the form of URLs.

Such mechanisms are under implementation in ASPIRE. The ALE extensions for
tag memory raw data and for sensor information will be provided as part of
ASPIRE middleware, while general purpose information can be implemented as a
pluggable mechanism that should be provided by applications that use ASPIRE
middleware. By using the ALE’s extensibility mechanism provided in applications
built on top of ASPIRE can have custom information in their data collection
process.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 24/58

Section 6 ALE Server Configurator tools
As far as ease of development is concerned, the ASPIRE architecture specifies
the existence of an IDE, which is conveniently called AspireRFID IDE and which
enables the visual management of all configuration files and meta-data that are
required for the operation of an RFID solution.

Figure 9 Programmability Tooling

AspireRFID IDE has been designed as an Eclipse RCP (Rich Client Platform)
application that runs over Equinox OSGI server. It uses the command API to
define menus, pop-up menu items and toolbars so as to support easily plug-ins
and provide more control. Every tool is an eclipse plug-in/bundle that is able to
be installed or removed as needed. This way many editions of the AspireRFID
IDE can be released depending on the functionalities required (as simple or as
complicate depending on the demands) for the ASPIRE’s RFID middleware blocks
that will be used.

The ALE Server Configurator plug-in shown in Figure 10 below is a tool that
provides a control client to execute Application Level Event specification (ALE)
commands on a component that implements the ALE specification and more
specifically the AspireRFID Filtering and Collection Server. The ALE Server
Configurator is integrated in the AspireRFID IDE as an Eclipse RCP (Rich Client
Platform) plug-in application.

The Implementation and Documentation of ALE Server Configurator can be found
at the AspireRFID Forge (http://forge.ow2.org/projects/aspire) and Wiki
(http://wiki.aspire.ow2.org/) page respectively. The executable final version of
the ALE Server Configurator (AspireRfidIdeToolCollection[version]) can be found
at the AspireRFID Forge Files page
(http://forge.ow2.org/project/showfiles.php?group_id=324), the source code of
the implementation can be found at the AspireRFID
SVN(http://forge.ow2.org/plugins/scmsvn/index.php?group_id=324). Directions

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 25/58

on how to use the ALE Server Configurator can be found at the AspireRFID Wiki
documentation page
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation.AspireIDE/AleSer
verConfigurator.

Figure 10 Ale Server Configurator Plug-in

6.1 ECSpec Configurator

ECSpec Configurator is used to manage ECSpecs life cycle by providing a user
friendly configurable interface. The ECSpec Configurator implements the ALE
main API class using the following methods:

• define(specName : String, spec : ECSpec), which creates a new ECSpec
having the name specName, according to spec.

• undefine(specName : String), which removes the ECSpec named
specName that was previously created by the define method.

• getECSpec(specName : String), which returns the ECSpec that was
provided when the ECSpec named specName was created by the define
method.

• getECSpecNames(), which returns an unordered list of the names of all
ECSpecs that are visible to the caller.

• subscribe(specName : String, notificationURI : String), which adds a
subscriber having the specified notificationURI to the set of current
subscribers of the ECSpec named specName.

• unsubscribe(specName : String, notificationURI : String), which removes a
subscriber having the specified notificationURI from the set of current
subscribers of the ECSpec named specName.

• poll(specName : String), which requests an activation of the ECSpec
named specName, returning the results from the next event cycle to
complete.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 26/58

• immediate(spec : ECSpec), which creates an unnamed ECSpec according
to spec, and immediately requests its activation.

• getSubscribers(specName : String), which returns an unordered, possibly
empty list of the notification URIs corresponding to each of the current
subscribers for the ECSpec named specName.

• getStandardVersion(), which returns a string that identifies what version
of the specification this implementation of the Reading API complies with.

• getVendorVersion(), which returns a string that identifies what vendor
extensions this implementation of the Reading API provides.

Figure 11 ECSpec Configurator View

6.2 LRSpec Configurator

LRSpec Configurator is used to manage LRSpecs life cycle by providing a user
friendly configurable interface. The LRSpec Configurator implements the ALE
main Reading API class with the following methods:

• define(name : String, spec : LRSpec), which creates a new logical reader
named name according to spec.

• update(name : String, spec : LRSpec) , which changes the definition of the
logical reader named name to match the specification in the spec
parameter.

• undefine(name : String) , which removes the logical reader named name.
• getLogicalReaderNames(), which returns an unordered list of the names of

all logical readers that are visible to the caller.
• getLRSpec(name : String) , which returns an LRSpec that describes the

logical reader named name.
• addReaders(name : String, readers : List<String>), which adds the

specified logical readers to the list of component readers for the composite
logical reader named name.

• setReaders(name : String, readers : List<String>), which changes the list
of component readers for the composite logical reader named name to the
specified list.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 27/58

• removeReaders(name : String, readers : List<String>), which removes
the specified logical readers from the list of component readers for the
composite logical reader named name.

• setProperties(name : String, properties : List<LRProperty>), which
changes properties for the logical reader named name to the specified list.

• getPropertyValue(name : String, propertyName : String) , which returns
the current value of the specified property for the specified reader, or null
if the specified reader does not have a property with the specified name.

• getStandardVersion(), which Returns a string that identifies what version
of the specification this implementation of the ALE Logical Reader API
complies with.

• getVendorVersion(), which returns a string that identifies what vendor
extensions of the ALE Logical Reader API this implementation provides.

LRSpec configurator currently supports RP (Reader Protocol), LLRP (Low Level
Reader Protocol), generic HAL (Hardware Abstraction Layer) and Composite
readers.

Figure 12 LRSpec Configurator View

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 28/58

Section 7 F&C Practical Use Case Examples and Implementation

In this Section, three simple use cases that demonstrate the additions, deletions
and grouping capabilities of the Filtering and Collection server will be presented
corresponding to a Company’s needs to track products added, removed or
counted from a shelf.

7.1 Use case 1: Specific family’s products added to a shelf

This use case’s purpose is to identify the set of Tag ID’s of the Class
“urn:epc:pat:gid-96:145.255.*” that have been added to a specific shelf. For
capturing and viewing the produced ECReport from the Filtering and Collection
server a rather simple application will be used called “TCP Message Capturer”.

The corresponding ECSpec that is defined and subscribed to the Filtering and
Collection Server to serve the needs of this use case is shown in the Table 2
below.

Table 2: Use case 1 ECSpec

The ECSpec is defined by using the ECSpecConfigurator tool. Afterwards, the
ECSpec is subscribed, by using the ECSpecConfigurator tool, to the ASPIRE TCP
Message Capturer. A tag that belongs to the “urn:epc:pat:gid-96:145.255.*”

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ECSpec includeSpecInReports="true" xmlns:ns2="urn:epcglobal:ale:xsd:1">
 <logicalReaders>
 <logicalReader>AccadaSimulatorWithRPProxy</logicalReader>
 </logicalReaders>
 <boundarySpec>
 <repeatPeriod unit="MS">5000</repeatPeriod>
 <duration unit="MS">5000</duration>
 <stableSetInterval unit="MS">0</stableSetInterval>
 <extension/>
 </boundarySpec>
 <reportSpecs>
 <reportSpec reportOnlyOnChange="false" reportName="additionsReport"
 reportIfEmpty="true">
 <reportSet set="ADDITIONS"/>
 <filterSpec>
 <includePatterns>
 <includePattern>urn:epc:pat:gid-96:145.255.*</includePattern>
 </includePatterns>
 </filterSpec>
 <output includeTag="true" includeRawHex="false" includeRawDecimal="false"
 includeEPC="true" includeCount="false"/>
 </reportSpec>
 </reportSpecs>
 <extension/>
</ns2:ECSpec>

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 29/58

pattern is placed within the proximity of the shelf antenna as shown in picture
Figure 13 below.

Figure 13 Fosstrak Reader Simulator.

The produced report from the F&C server is captured by the ASPIRE TCP
Message Capturer and is shown in Table 3 below.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 30/58

Table 3: Use case 1 ECReport

As we can see from the produced ECReport the tag id is reported only once as
soon as the product enters the shelf reader proximity and never again.

7.2 Use case 2: Specific family’s products removed from a shelf

This use case’s purpose is to identify the set of Tag ID’s of the following Class
“urn:epc:pat:gid-96:145.255.*” that have been removed from a specific shelf.

The corresponding ECSpec that is defined and subscribed to the Filtering and
Collection Server to serve the needs of this use case is shown in Table 4 below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ECReports totalMilliseconds="5000" terminationCondition="DURATION"
specName="ECSpec_additions" date="2009-03-14T16:24:55.500+02:00" ALEID="ETHZ-
ALE443245070" xmlns:ns2="urn:epcglobal:ale:xsd:1">
 <reports>
 <report reportName="additionsReport">
 <group>
 <groupList>
 <member>
 <epc>urn:epc:id:gid:145.255.487</epc>
 <tag>urn:epc:tag:gid-96:145.255.487</tag>
 </member>
 </groupList>
 </group>
 </report>
 </reports>
</ns2:ECReports>

-----Report 2------

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ECReports totalMilliseconds="5000" terminationCondition="DURATION"
specName="ECSpec_additions" date="2009-03-14T16:24:55.500+02:00" ALEID="ETHZ-
ALE443245070" xmlns:ns2="urn:epcglobal:ale:xsd:1">
 <reports>
 <report reportName="additionsReport">
 <group>
 <groupList>
 <member>
 </member>
 </groupList>
 </group>
 </report>
 </reports>
</ns2:ECReports>

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 31/58

Table 4: Use case 2 ECSpec

The ECSpec is defined by using the ECSpecConfigurator tool. Afterwards, the
ECSpec is subscribed, by using the ECSpecConfigurator tool, to the ASPIRE TCP
Message Capturer. A tag that belongs to the “urn:epc:pat:gid-96:145.255.*”
pattern that is already placed within the proximity of the shelf antenna is
removed.

The produced report from the F&C server is captured by the ASPIRE TCP
Message Capturer and is shown in Table 5 below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ECSpec includeSpecInReports="true" xmlns:ns2="urn:epcglobal:ale:xsd:1">
 <logicalReaders>
 <logicalReader>AccadaSimulatorWithRPProxy</logicalReader>
 </logicalReaders>
 <boundarySpec>
 <repeatPeriod unit="MS">5000</repeatPeriod>
 <duration unit="MS">5000</duration>
 <stableSetInterval unit="MS">0</stableSetInterval>
 <extension/>
 </boundarySpec>
 <reportSpecs>
 <reportSpec reportOnlyOnChange="false" reportName="deletionsReport"
 reportIfEmpty="true">
 <reportSet set="DELETIONS"/>
 <filterSpec>
 <includePatterns>
 <includePattern>urn:epc:pat:gid-96:145.255.*</includePattern>
 </includePatterns>
 </filterSpec>
 <output includeTag="true" includeRawHex="true" includeRawDecimal="false"
 includeEPC="true" includeCount="false"/>
 </reportSpec>
 </reportSpecs>
 <extension/>
</ns2:ECSpec>

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 32/58

Table 5: Use case 2 ECReport

As we can see from the produced ECReport the tag id is reported only once as
soon as the product is removed from the shelf reader proximity and never again.

7.3 Use case 3: Specific family’s products’ grouping and counting

This use case’s purpose is to identify, group and count the set of Tag ID’s of the
following Tag id Class “urn:epc:pat:gid-96:145.255.*” that have been passed
thru an RFID dock door.

The corresponding ECSpec that is defined and subscribed to the Filtering and
Collection Server to serve the needs of this use case is shown in Table 6 below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ECReports totalMilliseconds="5000" terminationCondition="DURATION"
specName="ECSpec_deletions" date="2009-03-14T16:34:32.359+02:00" ALEID="ETHZ-
ALE443245070" xmlns:ns2="urn:epcglobal:ale:xsd:1">
 <reports>
 <report reportName="deletionsReport">
 <group>
 <groupList>
 <member>
 <epc>urn:epc:id:gid:145.255.487</epc>
 <tag>urn:epc:tag:gid-96:145.255.487</tag>
 <rawHex>urn:epc:raw:96.x3500000910000FF0000001E7</rawHex>
 </member>
 </groupList>
 </group>
 </report>
 </reports>
</ns2:ECReports>

----Report 2----

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ECReports totalMilliseconds="5000" terminationCondition="DURATION"
specName="ECSpec_deletions" date="2009-03-14T16:34:32.359+02:00" ALEID="ETHZ-
ALE443245070" xmlns:ns2="urn:epcglobal:ale:xsd:1">
 <reports>
 <report reportName="deletionsReport">
 <group>
 <groupList>
 <member>
 </member>
 </groupList>
 </group>
 </report>
 </reports>
</ns2:ECReports>

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 33/58

Table 6: Use case 1 ECSpec

The ECSpec is defined by using the ECSpecConfigurator tool. Afterwards, the
ECSpec is subscribed, by using the ECSpecConfigurator tool, to the ASPIRE TCP
Message Capturer. Three tags that belongs to the “urn:epc:pat:gid-
96:145.255.*” pattern pass thru the RFID dock door.

The produced report from the F&C server is captured by the ASPIRE TCP
Message Capturer and is shown in Table below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ECSpec includeSpecInReports="true" xmlns:ns2="urn:epcglobal:ale:xsd:1">
 <logicalReaders>
 <logicalReader>AccadaSimulatorWithRPProxy</logicalReader>
 </logicalReaders>
 <boundarySpec>
 <repeatPeriod unit="MS">4500</repeatPeriod>
 <duration unit="MS">4500</duration>
 <stableSetInterval unit="MS">0</stableSetInterval>
 <extension/>
 </boundarySpec>
 <reportSpecs>
 <reportSpec reportOnlyOnChange="false"
 reportName="currentTagsGroupingReport" reportIfEmpty="true">
 <reportSet set="CURRENT"/>
 <groupSpec>
 <pattern>urn:epc:pat:gid-96:145.255.*</pattern>
 </groupSpec>
 <output includeTag="true" includeRawHex="false" includeRawDecimal="false"
 includeEPC="true" includeCount="true"/>
 </reportSpec>
 </reportSpecs>
 <extension/>
</ns2:ECSpec>

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 34/58

Table 7: Use case 3 ECReport

As we can see from the produced ECReport the Tag ids are grouped under the
group name they belong to (urn:epc:pat:gid-96:145.255.*) and the tag count is
included also.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ECReports totalMilliseconds="4500" terminationCondition="DURATION"
specName="ECSpec_current" date="2009-03-14T16:51:47.078+02:00" ALEID="ETHZ-
ALE443245070" xmlns:ns2="urn:epcglobal:ale:xsd:1">
 <reports>
 <report reportName="currentTagsGroupingReport">
 <group groupName="urn:epc:pat:gid-96:145.255.*">
 <groupList>
 <member>
 <epc>urn:epc:id:gid:145.255.487</epc>
 <tag>urn:epc:tag:gid-96:145.255.487</tag>
 </member>
 <member>
 <epc>urn:epc:id:gid:145.255.485</epc>
 <tag>urn:epc:tag:gid-96:145.255.485</tag>
 </member>
 <member>
 <epc>urn:epc:id:gid:145.255.489</epc>
 <tag>urn:epc:tag:gid-96:145.255.489</tag>
 </member>
 </groupList>
 <groupCount>
 <count>3</count>
 </groupCount>
 </group>
 </report>
 </reports>
 </ns2:ECReports>

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 35/58

Section 8 Aspire Middleware modularity and dynamic provisioning using
OSGi

8.1 The OSGi dynamic service platform

The OSGi framework (http://www.osgi.org) is a dynamic service platform for the
construction of modular Java applications, allowing the installation,
uninstallation, update and startup of components without needing to do an
application reboot. In OSGi, components can provide services that are registered
in a service registry which is part of the OSGi framework. Other components can
then consume such services in a loose coupled way without knowing the actual
implementation behind the service interface, a sort of Service Oriented
Architecture (SOA) but with objects (services) inside the same JVM. However,
special care must be taken concerning the dynamicity of components and
services that may both appear and disappear during application execution. Due
to the high dynamicity characterizing OSGi components and services, availability
of the latter is likely to evolve at runtime. This phenomenon results in
intermittent services provided in a discontinuous way. Application developers
should face the issue of handling service disruptions in their code, which is being
addressed as part of the UJF work [19], as well as the correct releasing of
service instances [20].

The Aspire middleware is partially modularized as OSGi bundles (ie artifacts).
Those module can export or import packages (ie Java libraries) or/and
exchanging services that are dynamically registered (and unregistered).

8.2 The OSGi dynamic provisioning

The OSGi Bundle Repository (OBR RFC 112
http://www.osgi.org/Download/File?url=/download/rfc-
0112_BundleRepository.pdf) is a concept of a repository that stores information
(e.g. download URL, version, dependencies on other components) about a set of
components (bundles). There are OBR tools, in the form of components
themselves, which can be deployed in any OSGi framework. Such tools are able
to parse the contents of an OBR (identified by a URL, either local or remote) and
provide functionalities such as listing and installing components located in an
OBR. By using the OBR to install a component, the dependencies are
automatically installed along with the component, thus minimizing deployment
efforts and time.

The Aspire middleware uses facilities such as the OBR service to deploy (ie
installed, updated) a set of bundles and their explicit dependencies. More refined
services such as the OW2 JOnAS deployer service are envisaged. This advanced
deployer will cover features such as the update of mission-critical applications
such as RFID applications in non-stop production environment.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 36/58

8.3 The OSGi WireAdmin services

The OSGi specification proposes facilities to manage connections between
sensors data producers and consumers through its WireAdmin service using a
SOA approach. Producers and consumers are modeled as uniquely identified
OSGi services (i.e. they are published in a service registry along with a set of
properties). They are delivered in deployment units called bundles. At runtime
the connectors, namely wires, are managed by the WireAdmin Service. This
service allows wires to be created, deleted, retrieved and updated
programmatically. Once connected, producers can either push data into
consumers or provide data when they are polled through the wires. Wires are
persistent entities that bind specific producers and consumers through unique
identifiers. In order to handle the dynamicity of devices such as readers or
sensors, AspireRFID uses W-ADL and WireAdminBinder [21]. Collection of wires
are described in a declarative language called Wired Application Description
Language (WADL), so that the WireAdminBinder interpreter can create and
destroy the connectors between measurement producers and consumers as they
are introduced or removed dynamically from the execution environment.

The Aspire middleware relies on this producer-consumer model to represent
sensors and collected the data in order to add them in the ECReport extensions.
Sensors drivers are automatically wired to the F&C using the WireAdminBinder.

8.4 Service Oriented Component Models for the OSGi platform

On the OSGi platform, several component models have aimed at handling
dynamism concerns in order to facilitate the development of dynamic service-
based applications. The first was ServiceBinder developed by the UJF Adele
team. ServiceBinder became later Declarative Services in the 4th release of the
specification. Spring-Dynamic Modules is another component model that uses
XML descriptions to automate bindings in the Spring framework. The iPOJO
component model (http://felix.apache.org/site/apache-felix-ipojo.html originally
developed by the UJF Adele team) follows the same principles but it targets a
larger spectrum of applications and hosts from embedded systems (ARM9) to
high-end servers (JavaEE clusters). Components declare their service
dependencies and according to these declarations, component bindings are
automated dynamically at runtime, although it is still possible to declare static
mandatory services that cannot be substituted. Regarding iPOJO, the framework
extensibility allows the container to manage transparently other non-functional
via a handler mechanism such as persistence using Hibernate or distribution
using UPnP or Web Services (Apache XFire/CXF).

The Aspire middleware is partially componentized as iPOJO component factories
and instances (mainly code in the UJF branch). The current components cover
several readers, several sensors and several actuators.
The main iPOJO handler that are currently used are

• the EventAdminHandler (http://felix.apache.org/site/event-admin-
handlers.html) for event publication and subscription

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 37/58

• the JMX Handler (http://felix.apache.org/site/ipojo-jmx-handler.html) to
expose administration functionalities according the RFC 0139.

More OSGi services will be progressively “iPOJOfied”. More iPOJO handlers will be
progressively used: CM, DSLA, Distribution (RFC 119
http://www.osgi.org/download/osgi-4.2-early-draft3.pdf).

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 38/58

Section 9 Lower Level Filtering Investigations

So far, we have described every filtering, aggregation and collection that can be
operated on raw data before being forwarded to upper applications. These
functionalities are, as mentioned, part of the ALE standard. As explained above,
the functionalities are developed and offered in the core of the middleware.

Nevertheless, in order to reduce the network load and to facilitate operations off-
line as specified in the ASPIRE objectives, it would be interesting to deport part
of the ALE engine to the reader or mobile terminal. Indeed, if filtering and
aggregation is allowed at the very lowest level, the network is less loaded and
will scale better. Note that this topic is also part of Task 3.2. Therefore, a detail
report on the implementation of low level filtering will be presented in D3.4b due
M29. Whereas the current document will document investigations and
preliminary work conducted on low level filtering to date.

To make the needs for low level filtering clearer, let’s take an example to
illustrate it. Let us suppose that a big store needs to draw up an inventory. The
employee in charge of the inventory has at his disposal a mobile reader with a
terminal on which he can view objects in real time read by the reader. This
reader is wireless and may be disconnected from the network. Such an
application may be performed in “real time”, meaning that once a tag is read, its
EPC is sent immediately to the middleware core to be filtered and aggregated.
If the reader is able to perform these filtering and aggregating tasks, less data
are sent through the network. Nevertheless, all these actions cannot be
embedded on the mobile terminal, according to the specific rules and the CPU
and memory capacities of the terminal. Therefore, we propose to tune the
filtering rules according to the specific applications and embed only the ones
needed. The easiest and simplest form of low level filtering is to delete duplicated
data. For more complex actions, embedding specific filtering rules on the
terminal supposes that before starting the inventory (or any other action), the
terminal needs to be connected to the middleware and to exchange this
information.

We are currently developing this module which deports adaptive filtering rules to
the terminal. This is also part of the WP5 “Interface with the reader”.
This module has two roles. First, it has to create and transfer filtering rules
depending of the application needs and second, it has to forward the aggregated
and filtered data to the middleware, which has to process them together with
data coming from other readers that are not necessarily aggregated.

Following the SME needs, we found out that such inventories are generally
performed shelf by shelf, by kind of objects. When a shelf is scanned, some
objects may be read at the same time since entering the range of the reader
while lying on a neighboring shelf. A low-level filtering should allow deleting
these parasite data.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 39/58

To do so, we first investigated a solution based on the Received Signal Strength
indicator (RSSI). The idea was the following. Object tags lying on the shelf
currently scanned are closer to the reader than objects tags lying on further
shelves. By measuring the RSSI, we should remove all tags with a low RSSI.
Though seeming promising and interesting, first experiment results rose
technical problems that makes this RSSI tracks not feasible within the time and
with the resources dedicated to the ASPIRE project. In fact, experimentations
showed the impossibility to simply map a RSSI to a distance in a proportional
fashion. A tag close to the reader can induce a RSSI smaller than a further tag.
This is due to the fact that the power they can induce from the electromagnetic
field depends on their orientation. And as tags do not always have the same
orientation, the RSSI is not directly proportional to the distance. Elaborating an
accurate mapping between the RSSI and the distance would take a longer time
and need further experiments. In addition, we believe that this relationship is
highly hardware-dependent. Since ASPIRE is needed to cover a scope as large as
possible, we gave up with this track, at least temporarily.

The second idea we investigated is the following one. If the terminal is able to
embed a list of identifiers, before starting the inventory, the reader has to
download the list of potential tags lying on neighboring shelves. From this list,
the reader is able to filter the parasite data. This obviously requires a higher
amount of available memory but allows a lower level filtering and thus reduces
the amount of data sent to the middleware. By doing so, the reader will leverage
data of objects lying on the currently scanned shelves. This allows two things.
First, it draws up an accurate inventory of a kind of articles and second, it locates
objects placed on the wrong shelf since the identifier of that object will be
leveraged within the set of data. The only anomaly that will not be notified
happens when an object belonging to a neighboring shelf is on the scanned shelf.
Nevertheless, SME claim that this is an error they can deal with.

Another challenge that arises is pertaining to the maintenance of the quality of
data collected. One of ASPIRE’s properties states that ASPIRE will maintain data
quality which is one of the recommendations of ePrivacy and other data
directives. Data Quality means ASPIRE middleware based applications would not
collect or process information that is not essential to the organisation. For
instance, if a person with a tagged watch walks in to a store which implements
an ASPIRE middleware system; the readers will not collect the data by filtering
out the detection of the watch.

By defining filters or implementing low level filtering using the second method
illustrated above where parasite data are deleted, organisations would not be
able to detect that the person who had walked into the store is wearing a certain
watch. However, the challenge that arises here is how would the ASPIRE
middleware prevent adopters to configure the ECSpecs to read all tagged objects
in the store even though those objects do not belong to the store. And if they do,
what system could be set so that flags or alert messages could be used to warn
the implementers and notify auditors to maintain the Data Quality and comply

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 40/58

with various privacy directives. These are issues that need to be tackled in later
tasks and would be defined more precisely in the next deliverables.

To conclude this section, we detailed here the first low level investigations and
experiments. We intend to implement the abovementioned track and to analyse
it. We need to compare it to a solution that does not apply any low level filtering
and send the raw data to the middleware. We need to quantify what amount of
data is saved against what amount of memory is needed in order to specify when
one solution should be chosen instead of another.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 41/58

Section 10 Conclusions

This deliverable has provided a detailed description of data collection, filtering
and application level event functionalities of the ASPIRE RFID middleware
platform. The document was particularly concentrated on the specifications of
the interfaces, the modes of operation, the messages supported and the rules of
interaction of the filtering and collection server with other modules of the ASPIRE
architecture. Emphasis has been put on illustrating the genuine features of the
AspireRfid F&C middleware server, while the general operation of the ALE server
(as part of the FossTrak licensed server is illustrated in an Appendix).

The document also presented specific examples of the filtering and collection
functionalities and some initial research efforts towards the implementation of
low level filtering functionalities to be hosted at the reader or interrogators.
Future research issues include the investigation of reader interference
management, which is an increasingly complex problem in current mobile RFID
deployments, and the optimization of the anti-collision or singulation
mechanisms from the perspective of the middleware platform.

The deliverable has also presented the implementation status of the different
functionalities of the ALE server and its APIs, thus serving as a guide for ASPIRE
developers. The contents of this deliverable are complemented with an
accompanying CD which contains the actual software developed for the data
collection, filtering and application level events functionalities.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 42/58

Section 11 List of Figures

Figure 1 RFID system configuration with centralized architecture ... 11
Figure 2 RFID system configuration with decentralized architecture 11
Figure 3 EPC Network roles and interfaces ... 12
Figure 4 High-level overview of the services supported by the EPCglobal specifications [10]
 ... 13
Figure 5 Filtering and Collection (ALE) .. 16
Figure 6 Asynchronous reports from a standing request [15] .. Error! Bookmark not defined.
Figure 7 On-demand report from a standing request [15] Error! Bookmark not defined.
Figure 8: Synchronous report from one-time request [15] Error! Bookmark not defined.
Figure 9 Programmability Tooling .. 24
Figure 10 Ale Server Configurator Plug-in ... 25
Figure 11 ECSpec Configurator View .. 26
Figure 12 LRSpec Configurator View ... 27
Figure 14 ASPIRE F&C Event Cycle Implementation UML ... 52
Figure 15 ASPIRE F&C Reader Interfaces Implementation UML .. 54

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 43/58

Section 12 List of Tables

Table 2: Use case 1 ECReport ... 30
Table 3: Use case 2 ECSpec ... 31
Table 4: Use case 2 ECReport ... 32
Table 5: Use case 1 ECSpec ... 33
Table 6: Use case 3 ECReport ... 34
Table 1: Built-in Fieldnames, Datatypes, and Format .. 57
Table 2: Reading API ... 58
Table 3: Logical Reader API .. 58

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 44/58

Section 13 List of Acronyms

ALE Application Level Event
API Application Product Interface
ASPIRE Advanced Sensors and lightweight Programmable middleware for

Innovative Rfid Enterprise applications
BEG Business Event Generator
BSS Base Service Set
CSS Configuration Service Set
EPC Electronic Product Code
EPCIS Electronic Product Code Information Services
F&C Filtering and Collection
HAL Hardware Abstraction Layer
HTTP HiperText Transfer Protocol
IDE Integrated Development Environment
iPOJO injected POJO
JMX Java Management Extensions
LLRP Low Level Reader Protocol
MSS Monitoring Service Set
OBR OSGi Bundle Repository
OSGI Open Service Gateway Initiative
OSI Open System Interconnection
OSS Open Source Software
POJO Plain Old Java Object
RFID Radio Frequency Identification
RP Reader Protocol
SME Small and Medium Enterprise
SNMP Simple Network Management Protocol
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
TCO Total Cost of Ownership
TCP Transfer Control Protocol
UML Universal Markup Language
WADL Wired Application Description Language
WP Work Package
XML Extensible Markup Language

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 45/58

Section 14 References and bibliography

[1] FossTrak Project, http://www.fosstrak.org/index.html
[2] EPCglobal, “The Application Level Events (ALE) Specification, Version 1.1”,

February. 2008, available at: http://www.epcglobalinc.org/standards/ale
[3] EPCglobal, “Low Level Reader Protocol (LLRP), Version 1.0.1, August 13”,

2007, available at: http://www.epcglobalinc.org/standards/llrp
[4] EPCglobal, “Reader Protocol Standard, Version 1.1, June 21”, 2006 available

at: http://www.epcglobalinc.org/standards/rp
[5] EPCglobal, “EPCglobal Tag Data Standards, Version 1.4”, June 11, 2008,

available at: http://www.epcglobalinc.org/standards/tds/
[6] EPCglobal, “EPCglobal Tag Data Translation (TDT) 1.0”, January 21, 2006

available at: http://www.epcglobalinc.org/standards/tdt/
[7] LLRP Toolkit, http://www.llrp.org/
[8] Matthias Lampe, Christian Floerkemeier, “High-Level System Support for

Automatic-Identification Applications”, In: Wolfgang Maass, Detlef Schoder,
Florian Stahl, Kai Fischbach (Eds.): Proceedings of Workshop on Design of
Smart Products, pp. 55-64, Furtwangen, Germany, March 2007.

[9] Christian Floerkemeier, Christof Roduner, and Matthias Lampe, ‘RFID
Application Development with the Accada Middleware Platform’, IEEE Systems
Journal, Vol. 1, Issue 2, pp.82-94, December 2007.

[10] C. Floerkemeier and S. Sarma, “An Overview of RFID System Interfaces
and Reader Protocols”, 2008 IEEE International Conference on RFID, The
Venetian, Las Vegas, Nevada, USA, April 16-17, 2008.

[11] Russell Scherwin and Jake Freivald, Reusable Adapters: The Foundation of
Service-Oriented Architecture, 2005.

[12] Java Management Extensions (JMX) Technology Overview, available at:
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/overview/architecture.html

[13] Architecture Review Committee, “The EPCglobal Architecture Framework,”
EPCglobal, July 2005, available at: http://www.epcglobalinc.org.

[14] Achilleas Anagnostopoulos, John Soldatos and Sotiris G. Michalakos,
‘REFiLL: A Lightweight Programmable Middleware Platform for Cost Effective
RFID Application Development’, Journal of Pervasive and Mobile Computing
(Elsevier), Vol. 5, Issue 1, February 2009, pp. 49-63.

[15] Application Level Events 1.1(ALE 1.1) Overview, Filtering & Collection WG,
EPCglobal, March 5, 2008 , available at:
http://www.epcglobalinc.org/standards/ale

[16] EPCglobal Inc™. Frequently Asked Questions - ALE 1.1. EPCglobal.
[Online] http://www.epcglobalinc.org/standards/ale.

[17] John Soldatos, “The AspireRfid Project: Is Open Source RFID Middleware
still an option?”, RFID World, March 16th, 2009.

[18] K. S. Leong, M. L. Ng, and P. H. Cole, “The Reader Collision Problem in
RFID Systems,” in Proceedings of IEEE 2005 International Symposium on
Microwave, Antenna, Propagation and EMC Technologies for Wireless
Communications (MAPE 2005), Beijing, China, 2005.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 46/58

[19] Lionel Touseau, Walter Rudametkin and Didier Donsez, Towards a SLA-
based Approach to Handle Service Disruptions”, IEEE International
Conference on Services Computing (SCC'08)

[20] Kiev Gama, Didier Donsez, "Service Coroner: A Diagnostic Tool for
Locating OSGi Stale References," seaa, pp.108-115, 2008 34th Euromicro
Conference Software Engineering and Advanced Applications, 2008

[21] Lionel Touseau, Humberto Cervantes and Didier Donsez, “An Architecture
Description Language for Dynamic Sensor-Based Applications”, 5th
International IEEE Consumer Communications & Networking Conference
(CCNC'08)

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 47/58

APPENDIX I – ALE Server Operation (EPC-ALE) and Licensed Accada/FossTrak

Implementation

ALE Built-in Datatypes and Formats (Accada/Fosstrak Implementation)

This section defines data types and formats that are supported by the ALE Server
as described in [2]. The ALE Server recognizes each data type and format
defined in this section and interprets it as defined herein.

In general, the specification of each data type has to say what formats may be
used with that data type. A format must define syntax for literal values, for filter
patterns, and for grouping patterns.

• The epc datatype
The epc datatype refers to the space of values defined in the EPCglobal
Tag Data Standard [TDS1.3.1]. Because this includes “raw” EPC values,
any bit string of any length may be considered a member of the epc
datatype.

o Binary Encoding and Decoding of the EPC Datatype
o EPC datatype Formats
o EPC datatype Pattern Syntax
o EPC datatype Grouping Pattern Syntax

• Unsigned Integer (uint) Datatype

ALE Server recognizes the string uint as a valid datatype as specified in
this section.
The space of values for the datatype uint is the set of non-negative
integers.

o Binary Encoding and Decoding of the Unsigned Integer Datatype
o Unsigned Integer Datatype Formats
o Unsigned Integer Pattern Syntax
o Unsigned Integer Grouping Pattern Syntax

• The bits Datatype

The space of values for the datatype bits is the set of all non-empty and
finite-length sequences of bits.

o Binary Encoding and Decoding of the Bits Datatype
o Bits Datatype Formats

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 48/58

ALE Reading API Implementation (Licensed Accada/Fosstrak Implementation)

This interface makes use of a number of complex data types. The most
significant are the ECSpec, which specify how an event cycle is to be calculated,
and the ECReports, which contains one or more reports generated from one
activation of an ECSpec. Through the ALE interface clients may define and
manage event cycle specifications (ECSpecs), read Tags on-demand by
activating ECSpecs synchronously, and enter standing requests (subscriptions)
for ECSpecs to be activated asynchronously. Results from standing requests are
delivered through the ALECallback interface.

ASPIRE expose the ALE interface of the ALE Reading API via a wired protocol,
more specifically TCP-IP, and via a direct API in which clients call directly into
code that implements the API. Likewise, ASPIRE implements the ALECallback
interface via HTTP/TCP in which clients receive asynchronous results through a
direct callback. The ALE Reading API is described in details in the Filtering and
Collection Core specifications [2]. In this section we will have an overview of it.

Reading API Data Types

ECSpec

An ECSpec describes an event cycle and one or more reports that are to be
generated from it. It contains:

• a list of logical Readers whose data are to be included in the event cycle,
• a specification of how the boundaries of event cycles are to be determined,
• a list of specifications, each describing a report to be generated from this

event cycle.
The ALE Server interprets the fields of an ECSpec as follows:

• ECLogicalReaders
It is an unordered list that specifies one or more logical readers that are
used to acquire tags.

• ECBoundarySpec
It specifies how the beginning and end of event cycles are to be
determined.

• ECTime
It denotes a span of time measured in physical time units.

• ECTimeUnit
It is an enumerated type denoting different units of physical time that may
be used in an ECBoundarySpec.

• ECTrigger
It denotes a URI that is used to specify a start or stop trigger for an event
cycle or command cycle.

• ECReportSpec
It specifies one report to be included in the list of reports that results from
executing an event cycle. An ECSpec contains a list of one or more

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 49/58

ECReportSpec instances. When an event cycle completes, an ECReports
instance is generated, unless suppressed. An ECReports instance contains
one or more ECReport instances, each corresponding to an ECReportSpec
instance in the ECSpec that governed the event cycle. The ECReports
contained inside an ECReport cannot contain any ECReports. The number of
ECReport instances may be fewer than the number of ECReportSpec
instances, due to the rules of suppression of individual ECReport instances.

• ECReportSetSpec
It is an enumerated type denoting what set of Tags is to be considered for
filtering and output: all Tags read in the current event cycle, additions
from the previous event cycle, or deletions from the previous event cycle.

• ECFilterSpec
It specifies which Tags are to be included in the final report.

• ECFilterListMember
It specifies filtering by comparing a single field of a Tag to a set of
patterns. This type is used in both the Reading API and the Writing API.

• ECGroupSpec
It defines how filtered EPCs are grouped together for reporting.

• ECReportOutputSpec
It specifies how the final set of EPCs is to be reported.

• ECReportOutputFieldSpec
It specifies a Tag field to be included in an event cycle report.

• ECFieldSpec
It encodes a fieldspec which specifies three things:

o The fieldname
o The datatype
o And the format

• ECStatProfileName
Each valid value of ECStatProfileName names a statistics profile that can
be included in an ECReports.

ECReports

ECReports is the output from an event cycle. The “meat” of an ECReports
instance is the ordered list of ECReport instances, each corresponding to an
ECReportSpec instance in the event cycle’s ECSpec, and appearing in the
order corresponding to the ECSpec. In addition to the reports themselves,
ECReports contains a number of “header” fields that provide useful
information about the event cycle. The ALE Server includes these fields
according to the following definitions:
• ECInitiationCondition

Indicates what kind of event caused the event cycle to initiate: the receipt
of an explicit start trigger, the expiration of the repeat period, or a
transition to the requested state when no start triggers were specified in
the ECSpec. These correspond to the possible ways of specifying the start
of an event cycle

• ECTerminationCondition
Indicates what kind of event caused the event cycle to terminate: the
receipt of an explicit stop trigger, the expiration of the event cycle

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 50/58

duration, the read field being stable for the prescribed amount of time, or
the “when data available” condition becoming true. These correspond to
the possible ways of specifying the end of an event cycle as defined

• ECReport
It represents a single report within an event cycle.

• ECReportGroup
It represents one group within an ECReport.

• ECReportGroupList
An ECReportGroupList Is included in an ECReportGroup when any of the
four boolean fields includeEPC, includeTag, includeRawHex, and
includeRawDecimal of the corresponding ECReportOutputSpec are true.

• ECReportGroupListMember
Each member of the ECReportGroupList is an ECReportGroupListMember
and is constructed from information read from a single Tag.

• ECReportMemberField
Each ECReportMemberField within the fieldList of an
ECReportGroupListMember gives the value read from a single field of a
single Tag.

• ECReportGroupCount
It is included in an ECReportGroup when the includeCount field of the
corresponding ECReportOutputSpec is true.

• ECTagStat
provides additional, implementation-defined information about each
“sighting” of a Tag, that is, each time a Tag is acquired by one of the
Readers participating in the event cycle.

• ECReaderStat
An ECReaderStat contains information about sightings of a Tag by a
particular Reader.

• ECSightingStat
An ECSightingStat contains information about a single sighting of a Tag by
a particular Reader.

• ECTagTimestampStat
It is a subclass of ECTagStat.

ALECallback Interface

The ALECallback interface is the path by which ALE Server delivers asynchronous
results from event cycles to subscribers.

Whenever a transition specifies that “reports are delivered to subscribers” the
ASPIRE’s ALE Server attempt to deliver the results to each subscriber by
invoking the callbackResults method of the ALECallback interface once for each
subscriber, passing the ECReports for the event cycle, and using the binding and
addressing information specified by the notification URI for that subscriber as
specified in the subscribe call. All subscribers receive an identical ECReports
instance.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 51/58

ALE Logical Reader API (Licensed Accada/Fosstrak Implementation)

The ALE Logical Reader API is an interface of ALE Server through which clients
may define logical reader names, each mapping to one or more
sources/actuators provided by the implementation as described in the Filtering
and Collections core specifications [2]. The API also allows the manipulation of
configuration properties associated with logical reader names.

The Logical Reader API provides a standardized way for an ALE client to define a
new logical reader name as an alias for one or more other logical reader names.
The API also enables the manipulation of “properties” (name/value pairs)
associated with a logical reader name. Finally, the API provides a means for a
client to get a list of all the logical reader names available, and to learn certain
information about each logical reader.

The commands that are implemented at the ASPIRE’s ALE Server are:

• define
• update
• undefine
• getLogicalReaderNames
• getLRSpec
• addReaders
• setReaders
• removeReaders
• setProperties
• getPropertyValue
• getStandardVersion
• getVendorVersion

LRSpec

It describes the configuration of a Logical Reader.
LRProperty

A logical reader property is a name-value pair. Values are generically
represented as strings in the Logical Reader API. The ALE implementation
is responsible for any data type conversions that may be necessary.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 52/58

ALE EventCycle (Licensed Accada/Fosstrak Implementation)

Overview

The “heart” of ALE’s functionality is the EventCycle. An EventCycle is the smallest
unit of interaction between an ALE client and an ALE implementation through the
ALE reading API. In other words an EventCycle is an interval of time during which
tags are read. This Section will provide an overview of the implementation of an
EventCycle in the AspireRFID ALE.

Figure 14 ASPIRE F&C Event Cycle Implementation UML

Implementation

The EventCycle is implemented as a thread. After the thread creation it waits on
the EventCycles monitor. As soon as there are subscribers for the EventCycle the
ReportsGenerator launches the EventCycle through the launch method and the
EventCycle runs as long as specified by the duration value.

The reports are generated and sent through the ReportsGenerator Class as
shown on the UML diagram above to the subscribers. After some cleanup and
preparations for the next EventCycle, the EventCycle sets itself sleeping and
waiting periods for the next launch call.

Life Cycle

An EventCycle is constructed according to an EventCycle specification (called
ECSpec). The ECSpec specifies several parameters. The most important ones are
the time interval during which tags are read and the readers where tags shall be
collected.

Whenever a client defines a new EventCycle through the ALE interface, a new
ReportsGenerator will be created along an EventCycle. The ReportsGenerator
acts as a gateway to the EventCycle for clients. A client does not subscribe on an

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 53/58

EventCycle but on the associated ReportsGenerator and then the
ReportsGenerator ensures that the EventCycle is started/stopped and that
subscribers (clients) receive the resulting tags. Upon its creation the EventCycle
acquires the readers from the logical reader API and registers as an Observer.
Until now the EventCycle does not accept tags. When a client subscribes for an
EventCycle, the ReportsGenerator starts the requested EventCycle and tags are
now accepted by it. When the specified duration (EventCycle duration) is over,
the EventCycle is stopped and the tags are passed through the Reports class
where they are filtered and then distributed to the clients by the
ReportsGenerator. In case where the EventCycle is not repeated (this means that
one EventCycle does not run multiple times) all readers are deregistered and the
EventCycle is destroyed together with its ReportsGenerator by a call to the stop()
method. [1]

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 54/58

ALE Reader Interfaces Architecture

One important feature of the ASPIRE middleware platform is the ability to
connect with multiple RFID readers. As Described in Deliverable D3.2 The ALE
Server as shown in Figure 5 above supports two main reader protocols to connect
with the various readers. These two protocols are the EPC-RP and The EPC-LLRP.

Low Level Reader Protocol Interface (AspireRfid Implementation)

The first communication interface between the ALE and an RFID reader is the
EPC LLRP (Low Level Reader Protocol). This communication is feasible by using
TCP protocol for both the notification channel over which XML LLRP reports are
transferred from the reader directly to the server and for the reader operation
programming by exchanging XML LLRP messages. Moreover the specific protocol
supports capture of sensor and user tag data from EPCglobal UHF Gen2 tags
which will be forwarded to the F&C server for processing.

Figure 15 ASPIRE F&C Reader Interfaces Implementation UML

As shown in the UML diagram above (Figure 15Error! Reference source not
found.) we are using the LLRPAdaptor class which extends the BaseReader. By
overriding the following BaseReader’s methods:

• start: start the reader
• stop: stop the reader
• connectReader: place the connection setup between the reader and the

reader adaptor
• disconnectReader: destroy the connection between the reader and the

adaptor
• identify: to poll the reader for the tags’ report
• update: to update through the logical reader API for dynamic specification

of the reader
• initialize: this method is used to setup the adaptor

And by using LLRP messages to implement them we achieve the communication
between an LLRP Reader and the F&C Server.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 55/58

LLRPInputGenerator which is used by the LLRPAdaptor creates a thread which
undertakes the task of connecting with the reader, taking in consideration the
logical reader specification file, and programming it by:

• Setting readers configuration,
• Adding Readers Operation Specifications
• Enabling them.

LLRPAdaptor starts the IdentifyThread which is polling the LLRP Reader
(depending on the defined ECSpec’s Boundary Specs) by starting the Reader
Operation Specifications every time an application subscribes to the F&C server.
The defined ECSpecs is using this LLRP reader for collecting the data it requests.

For the LLRP communication protocol we are using the LLRP toolkit library which
houses the development of open source libraries in various languages to help
reader and software vendors build and parse LLRP messages.

Reader Protocol Interface (Accada/Fosstrak Implementation)

The second communication interface between the ALE server and the RFID
reader is the EPC-RP. This communication is feasible by using HTTP protocol for
both the notification channel over which XML RP reports are transferred from the
reader directly to the server and for the reader operation programming by
exchanging XML RP messages. Moreover the specific protocol supports capture of
sensor and user tag data from EPCglobal UHF Gen2 tags, which will be forwarded
to the F&C server for processing.

As shown in the UML diagram above (Error! Reference source not found.) we are
using the RPAdaptor class which extends the BaseReader. By overriding the
following BaseReader’s methods:

• start: start the reader
• stop: stop the reader
• connectReader: place the connection setup between the reader and the

reader adaptor
• disconnectReader: destroy the connection between the reader and the

adaptor
• identify: to poll the reader for the tags’ report
• update: to update through the logical reader API for dynamic specification

of the reader
• initialize: this method is used to setup the adaptor

And by using RP messages to implement them we achieve the communication
between an RP Reader and the F&C Server.

RPInputGenerator which is used by the RPAdaptor creates a thread which
undertakes the task of connecting with the reader, taking in consideration the
logical reader specification file, and programming it by:

• Setting the Notification Channel Endpoint
• Creating a read trigger
• Creating a Notification Trigger
• Creating a Data Selector

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 56/58

• Adding the Notification Trigger to the Notification Channel.

RPAdaptor starts the Identify Thread which is polling the RP Reader (depending
on the defined ECSpec’s Boundary Specs) by getting all the read reports from the
defined RP Reader Device sources every time an application subscribes to the
F&C server and the defined ECSpecs is using that RP reader for collecting the
data it demands.

For the RP protocol communication, we are using the FossTrak Reader Proxy
which is a Java class library that supports the communication with a reader that
implements the EPCglobal Reader Protocol Version 1.1.

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 57/58

APENDIX II ASPIRE ALE API Implementation Status

The following tables summarize the AspireRfid Filtering and Collection
specifications Implementation status. The tables refers to the combination of
Accada/FosTrak implementation, including the AspireRfid amendments.

Built-in Fieldnames, Datatypes, and Formats

 Specification Fields Implemented Partially

Implemented Comments

Built-in Fieldnames FC,RP,LLRP

epc fieldname FC,RP,LLRP Not implemented for all
EPC types

epcBank fieldname FC,RP,LLRP
Implemented only for

Gen2 Tag read
command

tidBank fieldname FC,RP,LLRP
Implemented only for

Gen2 Tag read
command

The afi fieldname FC,RP,LLRP Implemented At TDT
The nsi fieldname FC,RP,LLRP Implemented At TDT

Built-in Datatypes
and Formats FC,RP,LLRP

epc datatype
Binary Encoding and
Decoding of the EPC

Datatype

EPC datatype
Formats

EPC datatype Pattern
Syntax FC Not implemented for all

EPC types
EPC datatype

Grouping Pattern
Syntax

 FC Not implemented for all
EPC types

Table 2: Built-in Fieldnames, Datatypes, and Format

Reading API

 Specification Fields Implemented Partially
Implemented Comments

ALE – Main API Class FC,RP,LLRP
Error Conditions FC,RP,LLRP

ECSpec FC,RP,LLRP
ECLogicalReaders FC,RP,LLRP

ECBoundarySpec FC

start/stop trigger and
duration not

implemented,fix
stableSetInterval

ECTime FC
ECTimeUnit FC

ECReportSpec FC
filterSpec,

includeSpecInReports
and statProfileNames

Contract: 215417
Deliverable report – WP3 / D3.3

ID: D3.3_Data Collection, Filtering and Application Level
Events.doc10

Date: 29 Apr 2009

Revision: 0.10 Security: Public
 Page 58/58

not Implemented
ECReportSetSpec FC

ECGroupSpec FC Fieldspec is not
implemented

ECReport
OutputSpec FC

Validation of ECSpecs FC
ECReports FC

ECInitiation Condition FC Trigger not implemented

ECTermination
Condition FC

Trigger, Data Available
and Duration not

implemented
ECReport FC

ECReportGroup FC
ECReportGroupList FC

ECReportGroup
ListMember FC Stats not implemented

ECReport
MemberField FC

ECReport
GroupCount FC

ECTagStat LLRP
ECReaderStat LLRP
ECSightingStat LLRP

ECTag
TimestampStat LLRP

Table 3: Reading API

Logical Reader API

 Specification Fields Implemented Partially
Implemented Comments

Logical Reader API FC,RP,LLRP
Error Conditions FC,RP,LLRP

Conformance
Requirements FC,RP,LLRP

LRSpec FC,RP,LLRP
LRProperty FC,RP,LLRP

Table 4: Logical Reader API

