
ASPIRE FP7 215417

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the ASPIRE Consortium. Neither

this document nor the information contained herein shall be used, duplicated or
communicated by any means to any third party, in whole or in parts, except with prior written

consent of the ASPIRE consortium.

Collaborative Project

ASPIRE

Advanced Sensors and lightweight Programmable
middleware for Innovative Rfid Enterprise applications

FP7 Contract: ICT-215417-CP

WP4 – RFID Middleware programmability

Public report - Deliverable

ASPIRE Programmable Engine (APE) (Interim Version)

Due date of deliverable: M24
Actual Submission date: M24

Deliverable ID: WP4/D4.2a
Deliverable Title: Programmable RFID Solutions Specification (Interim

Version)
Responsible partner: AIT

Contributors:

Nikos Kefalakis - AIT
John Soldatos - AIT
Yongming Luo - AIT
Mathieu David - AAU
Sofyan M. Yousuf - OSI
Didier Donsez - UJF
Kiev Gama - UJF

Estimated Indicative
Person Months: 18

Start Date of the Project: 1 January 2008 Duration: 36 Months

Revision: 0.1
Dissemination Level: PU

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 2/51

Document Information

Document Name: ASPIRE Programmable Engine (ASE) (Interim Version)
Document ID: WP4/D4.2a
Revision: 1.2
Revision Date: 14 January 2010
Author: AIT
Security: PU

Approvals

 Name Organization Date Visa

Coordinator Neeli Rashmi Prasad CTIF-AAU

Technical
Coordinator John Soldatos AIT

Quality Manager Anne Bisgaard Pors CTIF-AAU

Reviewers

Name Organization Date Comments Visa

Sofyan M. Yousuf OSI 18/12/2009 Suggested corrections

PMs Spend per Partner

Organization PMs Spend Comments

AIT

AIT is the main contributor of the work
described within Sections 3, 5, 6, 8, 10
and Author of sections 1, 4.2, 5, 6, 8, 9,

10, 11 and Appendixes of the deliverable.
AIT has also implemented and

contributed this work to the AspireRFID
project (http://wiki.aspire.ow2.org/)

AAU Added Section 2

UJF UJF is the author of section 4.3

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 3/51

OSI OSI is the author of Section 12, part of
Section 2 and reviewed the document

Document history

Revision Date Modification Authors
0.1 02 Nov 09 TOC Nikos Kefalakis
0.2 10 Nov 09 TOC Finalization and Chapters Assign. Nikos Kefalakis
0.3 27 Nov 09 Added Section 4, Section 5, Section 8 Nikos Kefalakis
0.4 09 Dec 09 Added Section 2 Mathieu David
0.5 10 Dec 09 Augmented Section 2 Sofyan M. Yousuf
0.6 11 Dec 09 Added Section 10.1 Yongming Luo
0.7 15 Dec 09 Added Section 9, Section 10, Section 11 Nikos Kefalakis
0.8 17 Dec 09 Added Section 6 Nikos Kefalakis
0.9 17 Dec 09 Added Section 1 John Soldatos
1.0 18 Dec 09 Added Section 4.3 Didier Donsez, Kiev Gama
1.1 18 Dec 09 Added Section 12, Reviewed the Doc. Sofyan M. Yousuf

1.2 18 Dec 09 Added Section 3, 4.1, Replaced 4.3.1
and 4.3.2, Final Corrections. Nikos Kefalakis

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 4/51

Content

Section 1 Executive Summary .. 6
Section 2 Introduction ... 8
Section 3 AspireRFID Process Description Language .. 10
Section 4 Role within the AspireRFID Architecture ... 12

4.1 Filtering and Collection .. 13
4.1.1 ALE Client ... 13
4.1.2 ALE-LR Client ... 13

4.2 Business Event Generator ... 14
4.2.1 Functionality and relation with the Programmable engine 14

4.3 EPC Information Services .. 14
4.3.1 Capture Client ... 15
4.3.2 Query Client .. 15

Section 5 PE Interfaces ... 16
5.1 Encode API .. 16
5.2 Decode API .. 16

Section 6 PE Encode API Implementation .. 18
6.1 Encode Service ... 18

6.1.1 APDL Analysis and System Configuration .. 19
6.1.1.1 ALE-LR Setup ... 20
6.1.1.2 ALE Setup ... 20
6.1.1.3 EPC Information Service Setup .. 21
6.1.1.4 BEG Setup .. 21

Section 7 PE Decode API Implementation .. 23
7.1 Decode Service ... 23

Section 8 How PE Changed the AspireRFID Configuration Process 24
8.1 Configuring in the Conventional Way ... 24
8.2 Configuring in the Programmable Engine Way ... 25

Section 9 PE’s Examples .. 27
9.1 Encoding Example ... 27

9.1.1 Describing the Problem .. 27
9.1.2 Solution Requirements ... 27
9.1.3 Encoding the APDL Document ... 27

9.2 Decoding Example ... 33
Section 10 Business Process Workflow Management Editor (BPWME) Introduction
 34

10.1 Graphical Modeling Framework .. 35

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 5/51

Section 11 Current Implementation Status / Future Steps .. 37

11.1 Current Implementation Status ... 37
11.2 Future Steps .. 37

Section 12 Conclusions .. 38
Section 13 List of Figures ... 39
Section 14 List of Tables ... 40
Section 15 List of Acronyms .. 41
Section 16 References and bibliography .. 43
Appendix I APDL XML Schema .. 45
Appendix II APDL files ... 47

Encoding APDL Example .. 47
Appendix III Soap Bindings .. 51

PE Encode Soap Bindings .. 51
PE Decode Soap Bindings .. 51

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 6/51

Section 1 Executive Summary

Among the main objectives of ASPIRE is to research, specify and implement
domain specific languages (notably XML based) for specifying programmable /
configurable RFID solutions, along with related run-time software that will enable
their implementation over the ASPIRE middleware infrastructure. ASPIRE
deliverable D4.4 (delivered as an initial version in September 2009) focuses on
the specification of APDL (AspireRFID Process Description Language) a domain
specific language for describing/configuring RFID solutions. The present
deliverable is devoted to the description of a run-time middleware infrastructure
that is able to resolve APDL to the number of configuration files, which are
required for the deployment of an APDL solution over the ASPIRE middleware
infrastructure. This run-time middleware is conveniently called ASPIRE
Programmable Engine (APE) or (in short) PE (Programmable Engine).

The Programmable Engine bridges APDL with the underlying ASPIRE middleware
infrastructure, through “hiding” the lower-level details of the ASPIRE middleware
from the APDL developer. Thanks to the APDL and its respective PE, RFID
developers are capable of assembling and configuring RFID solutions in a high-
level language (using appropriate tools), in a way that is totally transparent to
the low-level middleware libraries (such as those enabling filtering, collection and
business event generation). Note that the PE is closely affiliated to the APDL
(tight coupling relationship), given that the PE is bound to interwork with specific
feature and functionalities of the APDL and vice versa. In addition to the
affiliations between APDL and PE, there is also a direct relationship between the
PE and the ASPIRE middleware architecture, given that the PE operates over the
ASPIRE open source middleware infrastructure (as the later is provided in the
scope of the AspireRFID OSS project (see: http://wiki.aspire.ow2.org/). Hence,
the present deliverable illustrates the interfaces of the PE to the middleware
building blocks of the ASPIRE architecture.

The PE comprises two dual types of functionalities: (a) Encode functionalities
enabling the encoding and subsequent mapping of an APDL compliant instance to
the ASPIRE middleware configuration files comprising the RFID solution, (b)
Decode functionalities enabling the decoding of an RFID solution to an APDL file
for subsequent processing and related changes in the solution. Both
functionalities are presented in the deliverable, along with relevant APIs
(Application Programming Interfaces).

ASPIRE envisages the use of tools for editing the APDL language and the
associated PE configuration parameters. This deliverable presents a proof of
concept of the related tools, with particular emphasis on the Business Process
Workflow Management Editor (BPWME), which enables the graphical modeling of
APDL compliant RFID based business processes. Along with the tools, the
deliverable provides concrete examples and use cases associated with the
operation of the PE.

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 7/51

The deliverable includes also a preliminary evaluation of the suggested approach
to programmable RFID development and deployment. In particular, it is shown
that developing an RFID solution using a PE based approach, results in a
significant reduction to the number of steps required from an inception of an
RFID solution to its deployment. Specifically, the deliverable manifests the
differences in complexity and steps required for two different configuration
methods, one involving the use of the PE and the other the conventional
integration of RFID solutions. However, it is also concluded that the PE approach
(though general) has certain limitations, since it is not directly applicable to
diverse domains other than logistics and supply chain management. Overall, the
present deliverable emphasizes on the first specification and implementation of
the PE. A later and final version of this deliverable is expected to enhance the
functionalities offered by the PE, in accordance with the evolution of the APDL (as
part of the related ASPIRE deliverable D4.4).

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 8/51

Section 2 Introduction

RFID technology has advanced significantly over the past few decades. Rapid
developments of low cost microelectronics and radio frequency transceivers have
considerably reduced size and costs of high frequency and ultra-high frequency
RFID transceivers allowing longer reading ranges and faster reading rates than
before. The technology is now viable to newer novel applications with higher
mobility and large number of tagged items. However, unlike conventional
scenarios, these new applications require a more robust and complex middleware
platform in order to cover issues at different layers of the communication
architecture, from different business contexts. This complexity has left several
open research issues in RFID middleware design that still pose a high entry cost
for RFID technology adopters, mainly SMEs.

The research carried out in ASPIRE will provide a radical change in the current
RFID deployment paradigm through innovative, programmable, royalty-free,
lightweight and privacy friendly middleware. ASPIRE solutions will be open
source and royalty free, which will bring an important reduction of the Total Cost
of Ownership, and at the same time programmable and lightweight in order to be
backwards compatible with current IT SME infrastructure. Additionally, ASPIRE
will be designed as privacy friendly which means that future privacy features
related to RFID can be easily adopted by the platform. Finally, ASPIRE will act as
a main vehicle for realizing the proposed swift in the current RFID deployment
paradigm. Portions (i.e. specific libraries) of the ASPIRE middleware will be
hosted and run on low-cost RFID-enabled microelectronic systems, in order to
further lower the TCO in mobility scenarios (i.e. mobile warehouses, trucks).
Hence, the ASPIRE middleware platform will be combined with innovative
European developments in the area of ubiquitous RFID-based sensing (e.g.,
physical quantities sensing (temperature, humidity, pressure, acceleration),
mobile, low-cost); towards enabling novel business cases that ensure improved
business results.

This new middleware paradigm will be particular beneficial to European SMEs,
which are experience significant cost barriers to RFID deployment. In-line with its
open-source nature this platform aims at offering immense flexibility and
maximum freedom to potential developers and deployers of RFID solutions. This
versatility includes the freedom of choice associated with the RFID hardware
(notably tags and interrogators), which will support the solution.

A great deal of ASPIRE research will be devoted towards development of the
ASPIRE middleware infrastructure with programmability. The aim is to allow
development and reuse of RFID solutions through minimal coding effort. The core
of the ASPIRE programmability will therefore be an engine capable of mapping
high level (business semantics) to low-level middleware abstractions and
information flows between them. This engine will orchestrate tags, readers,
filters and events into RFID solutions.

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 9/51

Programmability features aim at easing the configuration of ASPIRE solutions.
The ASPIRE programmability functionality will offer to RFID developers and
consultants the possibility to deploy RFID solutions through entering high-level
meta-data for a company (including the business context of its RFID
deployments), rather than through writing significant amounts of low-level
programming statements.

Hence this deliverable presents the specifications of the ASPIRE Programmable
Engine (APE). This module is an interface between the user and the ASPIRE
middleware to facilitate the deployment of a specific scenario. From a well
defined business scenario, the user can express the different actions in a
business process language, the AspireRFID Process Description Language
(APDL), that the Programmable Engine (PE) will convert to a language
understandable by the ASPIRE middleware.

The Programmable Engine is a run-time middleware module which will take as
input an APDL XML file and be able to:

• “Encode”/“program” the AspireRFID middleware.
• “Decode” the AspireRFID middleware (by retrieving all the information

from the AspireRFID middleware and create an APDL XML file by request).

As a first step, we will create a “static” ApireRFID plug-in client to encode/decode
the AspireRFID middleware through the Programmable Engine (PE).

At a second step we will investigate the creation of a “dynamic” client which will
be able to interact in real time with the Business Process Workflow Management
Editor (BPWME) plug-in.

This deliverable will briefly present the AspireRFID Process Description Language
in Section 3, and the relation between the Programmable Engine and the other
components in Section 4. The specifications of the Programmable Engine will be
described in the following sections: the PE interfaces in Section 5 and the encode
API implementation in Section 6. How the PE Changed the AspireRFID
Cofiguration Process will be presented in Section 8 and an example of the PE
encoding in Section 9 will follow. A brief introduction of the Business Process
Management Workflow Editor (BPMWE) will be presented in Section 10. The
current implementation status and future steps will be detailed in Section 11.
Ultimately, Section 12 will conclude this deliverable.

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 10/51

Section 3 AspireRFID Process Description Language

The ASPIRE Programmable Meta-Language is a language created from ASPIRE
with the intention to be able to fully describe an Open Loop RFID Business
Process and ultimately be used from the Programmable Engine to configure an
AspireRFID middleware running instance to serve the described Business
Processes. APDL is a combination of a set of specifications which are the
following:

• Logical Readers Specs
• ECSpecs
• Master Data Document
• Middleware Management/Configuration Data (Modules Endpoints)

All the above are augmented with design data for the visualization of the RFID
solution to the BPWME (Business Process Workflow Management Editor). To
achieve that APDL has adopted XPDL V1.0 specifications [27] from where it has
used many of it’s concepts and definitions.

Let us briefly remember the AspireRFID Process Description Language (APDL)
specification structure. The APDL has finite dendritic structure as shown in the
Figure 1 below and the “parent” object that is able to contain the description of a
complete open loop supply chain management scenario is the Open Loop
Composite Business Process (<OLCBProc/>). “OLCBProc” is consisted of a list of
objects called Close Loop Composite Business Process (<CLCBProc/>) that are
capable of describing a complete close loop supply chain scenario and the object
of Transitions (<Transitions/>) which carries the Close Loop Composite Business
processes context-related semantics description of Transitions between them
which is based on the XPDL V1.0 specifications [27].

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 11/51

Figure 1 APDL’s Schema graphical representation

Each of the “CLCBProc” objects are consisted of a list of Elementary Business
Process (<EBProc/>) Objects that describe the elementary Business
Transactions by providing:

• The various AspireRFID Middleware basic configuration variables,
• The required variables for the workflow graphical representation (x/y

coordinates),
• And the required Data fields (<DataField/>) which includes:

o The transactions required ECSpec,
o The transactions required LRSpec
o And the transactions required Master Data.

And the object of Transitions (<Transitions/>) which carries the Elementary
Business Processes context-related semantics description of Transitions between
them which is based on the XPDL V1.0 specifications [27].

More details about APDL can be found at Deliverable D4.4a [24] and an updated
Schema of the language can be found at Appendix I.

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 12/51

Section 4 Role within the AspireRFID Architecture

The AspireRFID Programmable Engine (PE) module as we can see in Figure 2
below resides between the AspireRFID IDE environment and the rest of the
AspireRFID architecture. More specifically it will be used as median for the
AspireRFID Business Process Workflow Management Editor (BPWME) plug-in to
“encode” the produced APDL xml file from it to the ASPIRE middleware. Vice
versa it will be able to “decode” from the ASPIRE middleware an already encoded
Business Process configuration and send it back to the BPWME. Moreover the
Programmable Engine (PE) is providing a standalone client which will be able to
encode to and decode from the AspireRFID middleware APDL xml files.

Figure 2 Programmable Engine role in the AspireRFID Architecture

The PE is fully based on Service Oriented Architecture (SOA) and it reveals two
interfaces, called “encode” and “decode” that are analyzed at Section 5, which
are using the SOAP protocol for exchanging messages. The main Objects that are
exchanged from the PE interface are APDL xml files that are used as input for the
encoding implementation and as output for the decoding.

For configuring the three basic AspireRFID modules, which are the Filtering and
Collection (F&C), the Business Event Generator (BEG) and the Information
Service repository (EPCIS), PE takes advantage of their specific and already
defined interfaces that are also using SOAP protocol for exchanging messages. In
the next paragraphs we are going to describe briefly their interfaces and the PE’s
communication type with the AspireRFID “underlying” modules. Moreover in the

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 13/51

following Sections we are going to analyze the PE’s Interface and how this is
implemented from ASPIRE.

At this point it worth’s to mention that AspireRFID architecture uses Fosstrak’s
[1] EPCIS and F&C (ALE) implementations that ASPIRE has enhanced and
tailored to meet its needs.

4.1 Filtering and Collection

The role of the filtering and collection module (F&C) within the ASPIRE
architecture is mainly to carry out processing to reduce the volume of captured
RFID data and to transform raw tag reads into streams of events that are
suitable for the application logic of Business Event Generator module. The main
specifications that define the F&C module functionality are the ECSpecs and the
LRSpecs. For an application, which in our case is the Programmable engine, to be
able to configure these specifications the ALE and the ALE-LR interfaces use is
required. This use co

4.1.1 ALE Client

Through a client that implements the ALE interface [2] and with the use of SOAP
protocol the Programmable Engine may define and manage event cycle
specifications (ECSpecs). The methods that ALE Interface exposes and are used
from the Programmable Engine to configure the F&C server are:

• The “define(specName : String, spec : ECSpec) : void” which Creates a
new ECSpec having the name specName, according to spec.

• The “getECSpecNames() : List<String>” which Returns an unordered list
of the names of all ECSpecs that are visible to the caller.

• The “undefine(specName : String) : void” which Removes the ECSpec
named specName that was previously created by the define method.

• The “subscribe(specName : String, notificationURI : String) : void” which
Adds a subscriber having the specified notificationURI to the set of current
subscribers of the ECSpec named specName.

• And the “unsubscribe(specName : String, notificationURI : String) : void”
which Removes a subscriber having the specified notificationURI from the
set of current subscribers of the ECSpec named specName.

4.1.2 ALE-LR Client

The Logical Reader API [2] provides a standardized way for an ALE client to
define a new logical reader name as an alias for one or more other logical reader
names. The API also provides a means for a client to get a list of all of the logical
reader names that are available, and to learn certain information about each
logical reader. Through a client that implements the ALE-LR interface and with
the use of SOAP protocol the Programmable Engine may define Logical Reader
specifications (LRSpecs). The methods that ALE-LR Interface exposes and are
used from the Programmable Engine to configure the F&C server are:

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 14/51

• The “getLogicalReaderNames() : List<String>” which Returns an unordered list
of the names of all logical readers that are visible to the caller. This list SHALL
include both composite readers and base readers.

• The “define(name : String, spec : LRSpec) : void” which Creates a new
logical reader named name according to spec.

• And the “update(name : String, spec : LRSpec) : void” which Changes the
definition of the logical reader named name to match the specification in
the spec parameter.

4.2 Business Event Generator

The role of the BEG is to automate the mapping between reports stemming from
F&C and IS events. The Business event generation (BEG) module associates
business-context information (Master Data) with event data. The data is stored
in the Information Services module repository as Event Data and are mapping
associated events with a company’s master data.

4.2.1 Functionality and relation with the Programmable engine

In order for BEG to create aforementioned Event Data it needs the EPCIS’s
offered services URLs (Capture/Query) and most importantly the appropriate
information from the EPCIS repository (Master Data). These necessary data for
the proper population of the EPCIS events are retrieved from the EPCIS
repository, and more specifically the data defined at the BusinessTransaction’s
Attributes vocabulary [23], by using EPCIS’s query interface. So for the
Programmable Engine to be able to perform the required management over the
BEG as shown in Figure 2 above it should be able to retrieve the EPCIS’s running
instance Query End-Point from a given APDL’s EBProc and use it to get the
VocabularyElementType [8] for a specific Elementary Business Processes
(EBProc) ID. Furthermore the PE should be able to retrieve the EPCIS Client
Capture End-Point from a given APDL’s EBProc so as to complete all the required
information to be able to use the BEG client service and more specifically the
“startBegForEvent” as shown in Table 4 below.

4.3 EPC Information Services

The EPCIS is a component responsible for receiving application-agnostic RFID
data from the filtering and collection layer, translating that data into business
events, and optionally storing them into an EPCIS repository.

The EPCIS provides standard interfaces that allow EPC-related data to be
captured and queried through a predefined set of operations. The ASPIRE EPC
EPCIS must provide the two corresponding interfaces between the filtering &
collection middleware and upstream layers (i.e. business event generation
modules or host applications), illustrated in the upper layers of on figure. In
particular: the Capture API and the Query API defined in the EPC Global’ EPCIS
specification [8]

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 15/51

Figure 3 Layers and interfaces concerning the EPCIS [8]

4.3.1 Capture Client

Because the Programmable Engine is not related with the Event Data creation
the Capture Client uses only the Master Data capture Interface provided by
ASPIRE [see D3.4a Section 10.2.1]. This Interface is used to Store the required
Master Data to the EPCIS’s vocabularies that are eventually used from the BEG
engine for the Event Data “production”.

4.3.2 Query Client

At runtime the Programmable Engine requires information from the EPCIS’s
Stored Master Data so as to Correctly Update/Save new ones thru the Capture
client. To achieve that the PE is using the EPCIS’s SimpleMasterDataQuery
Interface [8]. EPCIS provides the SimpleMasterDataQuery Interface which
provides predefined queries that Programmable Engine may invoke using the poll
methods of the EPCIS Query Control Interface.

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 16/51

Section 5 PE Interfaces

This section defines normatively the PE Encode and Decode API. The External
Interface is defined in the following two sections (5.1 and 5.2) and the
implementation is described in Section 6.

The programmable engine exposes two Interfaces. The first one gives the ability
to the Clients to “encode” the AspireRFID middleware with the use of an APDL
document. And the second one gives the ability to the client to “decode” and
retrieve an already configured APDL document from the AspireRFID middleware
by giving the ID of the Parent Business Process.

5.1 Encode API

As mentioned before the First Interface exposed from a Programmable Engine
implementation is the Encode interface. Encode API is consisted from only one
method which requires as input an APDL XML document, which contains the hole
RFID Business Process description, and returns an integer code which denotes if
the execution of this specific command is successful or not. With this method the
PE undertakes the task of configuring a running instance of AspireRFID
middleware with the Business Processes described to the given OLCBProc Object.

Method Argument/Result Type Description
encode openLoopCBProc OLCBProc This method configures the

AspireRFID middleware to serve the
described Business Processes from
the given APDL XML document. If the
encode is successful the reply ID will
be “400” if not the reply ID will be
“425”.

[result] Integer

Table 1 PE’s Encode Interface methods

The primary Datatypes associated with the PE Encode API are the “Integer” type,
which denotes the success id of the “encode” execution, and the “OLCBProc” type
which contains the APDL object and the Business Process Description.

5.2 Decode API

The second Interface exposed from a Programmable Engine implementation is
the Decode Interface. The Decode API is consisted from only one method
“decode” which requires as input a String of an OLCBProc ID which was primarily
been used to configure an AspireRFID middleware running instance. This service
will be used from clients that want to alter an already encoded Business Process
to the AspireRFID middleware by retrieving it (“decode”) make the required
changes and then reconfiguring back the middleware (“encode”).

Method Argument/Result Type Description
decode openLoopCBProcID String This method returns an OLCBProc

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 17/51

[result] OLCBProc Object which is retrieved from an
AspireRFID middleware running
instance by a prior configured
(encoded) OLCBProc by giving that
object’s ID.

Table 2 PE’s Decode Interface methods

The primary Datatypes associated with the PE are the “String” type, which is the
ID of a prior configured OLCBProc, and the OLCBProc type which is constricted
and returned from the decode service.

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 18/51

Section 6 PE Encode API Implementation

In the previous section we have described the Programmable Engine’s Interfaces
so in this section we are going to describe how ASPIRE is implementing PE’s API.
The PE’s implementation requires the use of various existing API’s such as:

• ALE Reading API,
• ALE Logical Reader API,
• BEG API
• EPCIS Predefined Queries (SimpleMasterDataQuery and

SimpleMasterDataCapture)

So we are also going to describe how these Interfaces are applied from the PE to
configure the AspireRFID middleware.

6.1 Encode Service

The first PE API Implementation that we are going to analyze is the Encode
Service. Figure 4 below depicts the various steps PE implementation follows to
“encode” an APDL xml document into a running instance of AspireRFID
middleware.

Figure 4 Programmable Engine’s Encode Steps

Firstly the PE Client should retrieve from a file (Step 1) map it to an OLCBProc
Java Object with the help of JAXB (Java Architecture for XML Binding) and deliver
to the PE server interface (Step 2) an APDL XML document encapsulated inside a

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 19/51

SOAP message. At Appendix III the PE’s encode SOAP Interface can be found.
For the Web Services Implementation Apache CXF framework was used and
more specifically with Servlet Transport [26].

6.1.1 APDL Analysis and System Configuration

As soon as an OLCBProc Object arrives to the PE it is analyzed into their
CLCBProcs and into their EBProcs. Now for each EBProc and by taking in
consideration their parent Objects (Attributes and IDs) the required specification
files are build to configure an AspireRFID middleware running instance. Ulterior
objective of this analysis is to fill an Object which we conveniently call
“ProcessedEBProc” and is described in Table 3 below which will eventually include
all the required information for configuring the AspireRFID middleware for a
single Elementary Business Process.

Attribute Name Type Description
id String The ID of the

EBProc
name String The name of the

EBProc
ecSpec ECSpec The extracted

ECSpec file
lrSpecs Hashtable<String,LRSpec> A Hashtable with

key value the
Logical Reader
name and it’s
LRSpec as value.

epcisMasterDataDocument EPCISMasterDataDocumentType All the Master Data
that are required to
be stored for a
specific EBProc at
the EPCIS
repository.

ecSpecSubscriptionURI String The URI where the
Defined ECSpec
should be
subscribed. Actually
this URI is where
BEG is accepting
reports for this
EBProc.

definedECSpecName String The name of the
ECSpec that will be
Defined

aleClientEndPoint String The URI where the
ALE Reading API is
revealed

aleLrClientEndPoint String The URI where the
ALE Logical Reader

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 20/51

API is revealed
epcisClientCaptureEndPoint String The URI where the

EPCIS Capture
Interface is
revealed.

epcisClientQueryEndPoint String The URI where the
EPCIS Query
Interface is
revealed.

Table 3 ProcessedEBProc Object

6.1.1.1 ALE-LR Setup

For each EBProc the APDL language gives the ability to the User to describe
many Logical Reader specifications (LRSpecs) that are going to be used from the
ECSpec. That is why they are saved at a Hashtable Java Object, when the
received APDL document is analyzed for every EBProc it describes, in an “LRSpec
name”/ “LRSpec” pair manner.

So the third Step as shown in Figure 4 above is to get all the Already Defined
LRSpec names from the Running Instance of the AspireRFID middleware, which
is going to be configured, so as at the next step to “Define” only Logical Readers
that have not been priory been defined yet and “Update” Logical Readers that
have been (Step 4).

For the ALE-LR Setup three methods from the ALELR interface [2] are used:

• The “getLogicalReaderNames() : List<String>” which Returns an unordered list
of the names of all logical readers that are visible to the caller. This list SHALL
include both composite readers and base readers.

• The “define(name : String, spec : LRSpec) : void” which Creates a new
logical reader named name according to spec.

• And the “update(name : String, spec : LRSpec) : void” which Changes the
definition of the logical reader named name to match the specification in
the spec parameter.

6.1.1.2 ALE Setup

The ECSpec required for the AspireRFID configuration is directly taken from each
EBProc “DataField” the only tuning done is to concatenate to Every ECReport
name the EBProc’s ID, with the “@” symbol between them, which will be later be
used from the BEG so as to distinguish the received ECReports from the various
EBProc’s configurations.

In a same logic at Step 5 (Figure 4) the PE implementation gets all the defined
ECSpec names, which have been prior defined to the AspireRFID running
instance, so as to “Define” ECSpecs that do not prior exist and “Undefine/Define”
the existing ones so as to get updated (Step 6). After Configuring BEG and id
ready to receive ECReports the next Step (Step 10) would be to Subscribe the

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 21/51

“Defined” ECSpec, from the previous step (Step6), to the BEG Running instance
(“ecSpecSubscriptionURI” Table 3).

For the ALE Setup five methods from the ALE interface [2] are used:

• The “define(specName : String, spec : ECSpec) : void” which Creates a
new ECSpec having the name specName, according to spec.

• The “getECSpecNames() : List<String>” which Returns an unordered list
of the names of all ECSpecs that are visible to the caller.

• The “undefine(specName : String) : void” which Removes the ECSpec
named specName that was previously created by the define method.

• The “subscribe(specName : String, notificationURI : String) : void” which
Adds a subscriber having the specified notificationURI to the set of current
subscribers of the ECSpec named specName.

• And the “unsubscribe(specName : String, notificationURI : String) : void”
which Removes a subscriber having the specified notificationURI from the
set of current subscribers of the ECSpec named specName.

6.1.1.3 EPC Information Service Setup

The next thing that ASPIRE’s PE takes care of is the configuration of the Master
Data. For Each EBProc the Disposition, Transaction Type, Read Point and
Business Step are “Saved” to the EPCIS Repository, if they do not exist, from the
provided “EPCISMasterDataDocument” [8] with the help of the EPCIS Capture
Interface. The EPCIS Capture End Point is provided from the EBProc’s
“ExtededAttributes” [24] with name “EpcisClientCaptureEndPoint”. For the
Business Transaction EPCIS vocabulary type the hole OLCBProc Structure is
considered and a given EBProc is saved as the Child of it’s CLCBProc and in its
turn as a child of it’s OLCBProc. For the last task the various different Object ID’s
are used to build the aforementioned structure. This concludes the Step 7 of the
PE’s configuration process.

6.1.1.4 BEG Setup

Continuing, the Programmable Engine retrieves the EPCIS Query End-Point
provided from the EBProc’s “ExtededAttributes” [24] with name
“EpcisClientQueryEndPoint” and use it to get the VocabularyElementType [8]
(Step 8) for a specific Elementary Business Processes (EBProc) ID which
“conveniently happens” to be the same as the BusinessTransaction’s ID that BEG
is going to be configured to serve. After that the PE retrieves the EPCIS Client
Capture End-Point from the EBProc’s “ExtededAttributes” [24] with name
“ECSpecSubscriptionURI” and use the “startBegForEvent” BEG client Service,
which requires as input the “VocabularyElementType”, the
“repositoryCaptureURL” and the “begListeningPort” as shown in Table 4 below
which attributes have already been retrieved from the previous steps, to
configure the BEG’s functionality for the given EBProc (Step 9).

Service Name Input Output Info
getEpcListForEvent String eventID EventStatus* Returns what is

currently happening
for a specific

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 22/51

transaction
stopBegForEven String eventID boolean Stop serving a

specific Event
(described at the
Master Data)

getStartedEvents --- List<String> Get all the Event IDs
that are currently
been served from the
BEG

startBegForEvent VocabularyElementType[8]
VocElem, String
repositoryCaptureURL,
String begListeningPort

boolean Start a specific Event
that is available at
the EPCIS’s Master
Data

getEventList String repositoryQueryURL List
<VocabularyElementT
ype>

Get all the Available
Events (ready to be
served) from the
EPCIS’s repository
Master Data

Table 4 BEG server Web Service Interface

* EventStatus is consisted of the following objects:

• A String which denotes the Transactions ID named “transactionID”
• And a list of Strings (ArrayList<String>) which stores all the read tags that

are connected with the abovementioned Transaction named “epcList”

After Subscribing the ECSpec to the BEG running instance the final step (Step
11) is to send back to the Programmable Engine’s client the Encode execution
status. Where if it was completed successfully it returns an Integer number that
equals “400” if not it returns “425”.

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 23/51

Section 7 PE Decode API Implementation

7.1 Decode Service

(To be implemented and documented in Version 2 of this deliverable)

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 24/51

Section 8 How PE Changed the AspireRFID Configuration Process

In this section we are going to compare the two AspireRFID configuration
methods, the conventional and the PE client method. We are going to compare
them in regard of complexity and time required for a user (e.g. RFID integrator)
to configure the AspireRFID middleware. In both cases we assume that all the
configuration files are already predefined as comparing the generation of them is
out of the scope of the Programmable Engine’s features and capabilities.

8.1 Configuring in the Conventional Way

To achieve the configuration of the hole AspireRFID middleware for even a
relatively simple scenario, like the one that is described in paragraph 9.1 below
where we define only an EBProc, it would require to follow a few steps and to use
a bunch of different AspireRFID “Configurators” (e.g. ECSpec Configurator,
LRSpec Configurator and BEG configurator). Figure 5 below illustrates the
different steps that an RFID integrator should follow to configure the AspireRFID
middleware with the use of the aforementioned tools.

More specifically for defining an Elementary Business Process (as shown in Figure
5 below) we should:

• Use the LRSpec Configurator plug-in where the needed LRSpec xml file
should be retrieved (Step 1) from the folder that was stored and then
“Define” it to the ALE module paired up with the Logical Reader name
(Step 2).

• The next step, with the help of the ECSpec configurator plug-in, would be
to “Define” the required ECSpec file which should be retrieved from the
folder that is stored (Step 3) and then be “Defined” paired up with the
ECSpec name to the ALE module (Step 4).

• The next module that should be configured is the Business Event
Generator and this is done with the use of the BEG configurator plug-in.
With this plug-in firstly we retrieve all the available, already predefined,
Business Events from the EPCIS repository (Step 5) and as soon as we
choose the one that interests us, and set up a Port for the BEG to receive
reports for the specific Business Event, we activate BEG to “serve” the
Event (Step 6).

• And for the last Step by using again the ECSpec Configurator in
“Subscribe” mode this time the already predefined ECSpec should be
Subscribed (Step 7) to the Port that the BEG was prior (at Step 6)
configured to receive Reports.

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 25/51

Figure 5 Required AspireRFID Configuring Steps without Programmable Engine

8.2 Configuring in the Programmable Engine Way

From the previous section we observe that, to configure the AspireRFID
middleware with the conventional way, for just one Elementary Business Process
Seven Steps are required from the User. In this section we will describe what is
required from the User to configure the AspireRFID middleware with the use of
Programmable Engine’s plug-in (client) again for only one EBProc. It worth’s to
mention that even if we had to configure the AspireRFID middleware for “N”
EBProc’s (even for a complete Open Loop supply chain scenario) the steps that
the user would have to follow would be the same as the ones described below
and would have to follow them only one time.

So assuming that the APDL XML file has already been build for configuring the
AspireRFID middleware with the PE’s User Client plug-in the first step would be
to retrieve the “apdl.xml” file from the folder that is stored (Step 1). And the
second and final Step would be to use the “Encode” service of the PE’s thru the
PE Client (Step 2).

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 26/51

Figure 6 Required AspireRFID Configuring Steps with Programmable Engine

Summing up from the above we easily observe the differences in complexity and
steps required for the two different Configuration methods which are:

• For the conventional way: 7 x “N” Steps
o Where “N” the EBProc’s required to describe the a hole Supply Chain

scenario.
• And for the PE’s way only 2 Steps are required independently of how

complex the scenario is.

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 27/51

Section 9 PE’s Examples

9.1 Encoding Example

In this Section we will use the “Receiving” Example provided at deliverable D4.3b
(Programmable Filters – FML Specification) and at D4.4a (Programmable RFID
Solutions Specification). At the D4.3b’s example we described how the different
modules should be configured separately, with the help of the different
specification files required, to serve the “Receiving” process of a specific
warehouse. At the D4.4a’s example we describe how an APDL (AspireRFID
Process Description Language) specification file should be defined for a
“Receiving” EBProc so as to be able to configure the whole AspireRFID
middleware to serve a warehouse receiving process. So in this example we will
analyze how an APDL XML file is used from the PE to configure it. So let’s start
by the problem description.

9.1.1 Describing the Problem

A Company Named “ACME” which is a Personal Computer Assembler collaborates
with a Microchip Manufacturer that provides it with the required CPUs. ACME at
regular basis places orders to the Microchip Manufacturer for specific CPUs. ACME
owns a Central building with three Warehouses. The first warehouse named
Warehouse1 has 2 Sections named Section1 and Section2. Section1 has an
entrance point where the delivered goods arrive.

ACME needs a way to automatically receive goods at Warehouse1 Section1 and
inform its WMS for the new product availability and the correct completeness of
each transaction.

9.1.2 Solution Requirements

An RFID Portal should be placed to ACME’s Warehouse1 Section1 entrance point
which will be called ReadPoint1. The RFID portal will be equipped with one
Reader WarehouseRfidReader1. The received goods should get equipped with
preprogrammed RFID tags from their “Manufacturer”. The received goods should
be accompanied with a preprogrammed RFID enabled delivery document. And
finally the APDL XML file that was build at the Deliverable D4.4a (Section 8.4)
[24] should be used to configure an AspireRFID middleware (Figure 2 above)
instance which for your convenience an updated version is available at Appendix
II.

9.1.3 Encoding the APDL Document

As shown in Figure 6 and described in Section 8.2 above two steps are required
from the Users side to configure the AspireRFID middleware. In this section we
will give an example on how the APDL XML file, which was build in D4.4a, is used
from the Programmable Engine to configure the AspireRFID middleware.

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 28/51

At the Programmable Engine’s side as shown in Figure 4 above after getting the
command (Step 1, 2) from the user to encode this specific APDL file the next
step is to analyze the received file and distinct the different CLCBProc’s and their
EBProc’s which in this case we have only one from each. The ID for the CLCBProc
is “urn:epcglobal:fmcg:bti:acmesupplying” and the ID of the EBProc is
“urn:epcglobal:fmcg:bte: acmewarehouse1receive” as shown in Table 5 below.

<apdl:OLCBProc id=" urn:ow2:aspirerfid:aprod:firstopenloopdescribedprocess"
 name=" AcmeSupplyChainManagement">
>
 <!-- AspireRFID Process Description (Language Specification) -->

 <apdl:CLCBProc id="urn:epcglobal:fmcg:bti:acmesupplying"
 name="CompositeBusinessProcessName">
 <!-- RFID Composite Business Process Specification (the ID will be the
 Described Transactions's URI)-->
 <Description>Acme Supply Chain</Description>

 <apdl:EBProc Id="CLCBProcEnd" Name="CLCBProcEnd">
 </apdl:EBProc>

 <apdl:EBProc Id="CLCBProcStart" Name="CLCBProcStart">
 </apdl:EBProc>

 <apdl:EBProc id="urn:epcglobal:fmcg:bte:acmewarehouse1receive"
 name="AcmeWarehouse3Ship">
 </apdl:EBProc>

 <Transitions>
 </Transitions>
 </apdl:CLCBProc>

</apdl:OLCBProc>

Table 5 CLCBProc Object [Encoding APDL Example]

Now for each EBProc and by taking in consideration their parent Objects
(Attributes and IDs) the required specification files are build to configure this
AspireRFID middleware running instance. So the Programmable Engine extracts
one by one all the required specification files from the EBProc to fill an Object
which we conveniently call “ProcessedEBProc” and is described in Table 3 above
which ultimately will be used to configure the AspireRFID running instance.

 <apdl:EBProc id="urn:epcglobal:fmcg:bte:acmewarehouse1receive"
 name="AcmeWarehouse3Ship">
 <!-- Elementary RFID Business Process Specification (the ID will be the
 Described Event's URI)-->
 <xpdl:Description>Acme Warehouse 3 Receiving ReadPoint5 Gate3
 </xpdl:Description>
 <xpdl:TransitionRestrictions>
 <xpdl:TransitionRestriction>
 <xpdl:Join Type="AND"/>
 </xpdl:TransitionRestriction>

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 29/51

 </xpdl:TransitionRestrictions>
 <xpdl:ExtendedAttribute Name="ECSpecSubscriptionURI"
 Value="http://localhost:9999" />
 <xpdl:ExtendedAttribute Name="AleClientEndPoint"
 Value="http://localhost:8080/aspireRfidALE/services/ALEService" />
 <xpdl:ExtendedAttribute Name="AleLrClientEndPoint"
 Value="http://localhost:8080/aspireRfidALE/services/ALELRService" />
 <xpdl:ExtendedAttribute Name="EpcisClientCaptureEndPoint"
 Value="http://localhost:8080/aspireRfidEpcisRepository/capture" />
 <xpdl:ExtendedAttribute Name="EpcisClientQueryEndPoint"
 Value=" http://localhost:8080/aspireRfidEpcisRepository/query " />
 </ExtendedAttributes>
 <apdl:DataFields>
 </apdl:DataFields>
 </apdl:EBProc>

Table 6 AcmeWarehouse3Ship EBProc

From the part of the EBProc shown in Table 6 above and more specifically the
“ExtendedAttributes” the PE extracts the following information for the
“ProcessedEBProc” object:

• Id: urn:epcglobal:fmcg:bte:acmewarehouse1receive
• Name: AcmeWarehouse3Ship
• ecSpecSubscriptionURI: http://localhost:9999
• aleClientEndPoint:

http://localhost:8080/aspireRfidALE/services/ALEService
• aleLrClientEndPoint:

http://localhost:8080/aspireRfidALE/services/ALELRService
• epcisClientCaptureEndPoint:

http://localhost:8080/aspireRfidEpcisRepository/capture
• epcisClientQueryEndPoint:

http://localhost:8080/aspireRfidEpcisRepository/query

Which in later steps are used from the PE to configure the AspireRFID running
instance.

ALE-LR Setup
For the APDL document we are working on only one Logical Reader is defined
which appears in Table 7 below.

 <apdl:DataField
 type="LRSpec" name=" SmartLabImpinjSpeedwayLogicalReader">
 <LRSPec>
 <isComposite>false</isComposite>
 <readers/>
 <properties>
 <property>
 <name>Description</name>
 <value>
 This Logical Reader consists of read point 1,2,3
 </value>
 </property>
 <property>
 <name>ConnectionPointAddress</name>

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 30/51

 <value>192.168.212.238</value>
 </property>
 <property>
 <name>ConnectionPointPort</name>
 <value>5084</value>
 </property>
 <property>
 <name>ReadTimeInterval</name>
 <value>1000</value>
 </property>
 <property>
 <name>PhysicalReaderSource</name>
 <value>1,2,3</value>
 </property>
 <property>
 <name>RoSpecID</name>
 <value>1</value>
 </property>
 <property>
 <name>ReaderType</name>
 <value>
 org.ow2.aspirerfid.ale.server.readers.llrp.LLRPAdaptor
 </value>
 </property>
 </properties>
 </LRSPec>
 </apdl:DataField>

Table 7 LRSpec DataField

As soon as the PE retrieve’s the given LRSpec it store it to the lrSpecs attribute
of the ProcessedEBProc Object in “SmartLabImpinjSpeedwayLogicalReader”/
“LRSpec Dynamic specification Object” pair manner. So the third Step as shown
in Figure 4 above is to get all the Already Defined LRSpec names from the
Running Instance of the AspireRFID middleware with the
getLogicalReaderNames() ALE-LR command and if the
“SmartLabImpinjSpeedwayLogicalReader” is not included in the returned list an
ALE-LR define(“SmartLabImpinjSpeedwayLogicalReader”, LRSpec) is executed. If
it is included then an ALE-LR update(“SmartLabImpinjSpeedwayLogicalReader”,
LRSpec) is executed (Step 4).

ALE Setup
The ECSpec required for the AspireRFID configuration is given from the ECSpec
“DataField” type. The only change to it done before storing it to the ecSpec
Attribute (for later use) of the ProcessedEBProc Object is to concatenate to Every
ECReport name which in our case is the “bizTransactionIDs” and the
“transactionItems” (as we want BEG to produce Object Events), with the “@”
symbol between them, the EBProc’s ID which is
“urn:epcglobal:fmcg:bte:acmewarehouse1receive” for later use of the BEG.

So the ECSpec’s ECReport names will become:

• bizTransactionIDs@urn:epcglobal:fmcg:bte:acmewarehouse1receive
• transactionItems@urn:epcglobal:fmcg:bte:acmewarehouse1receive

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 31/51

<apdl:DataField
 type="ECSpec" name="RecievingECSpec">
 <ECSpec includeSpecInReports="false">
 <logicalReaders>
 <logicalReader>
 SmartLabImpinjSpeedwayLogicalReader
 </logicalReader>
 </logicalReaders>
 <boundarySpec>
 <repeatPeriod unit="MS">4500</repeatPeriod>
 <duration unit="MS">4500</duration>
 <stableSetInterval unit="MS">0
 </stableSetInterval>
 </boundarySpec>
 <reportSpecs>
 <reportSpec reportOnlyOnChange="false"
 reportName="bizTransactionIDs"
 reportIfEmpty="true">
 <reportSet set="CURRENT"/>
 <filterSpec>
 <includePatterns>
 <includePattern>
 urn:epc:pat:gid-96:145.12.*
 </includePattern>
 </includePatterns>
 <excludePatterns/>
 </filterSpec>
 <groupSpec/>
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true"
 includeCount="true"/>
 </reportSpec>
 <reportSpec reportOnlyOnChange="false"
 reportName="transactionItems"
 reportIfEmpty="true">
 <reportSet set="ADDITIONS"/>
 <filterSpec>
 <includePatterns>
 <includePattern>
 urn:epc:pat:gid-96:145.233.*
 </includePattern>
 <includePattern>
 urn:epc:pat:gid-96:145.255.*
 </includePattern>
 </includePatterns>
 <excludePatterns/>
 </filterSpec>
 <groupSpec/>
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true"
 includeCount="true"/>
 </reportSpec>
 </reportSpecs>
 <extension/>
 </ECSpec>
 </apdl:DataField>

Table 8 ECSpec DataField

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 32/51

After that for Step 5 (Figure 4) the PE implementation gets all the defined ECSpec
names, which have been prior defined from the AspireRFID running instance with
the ALE’s getECSpecNames() command. If the “RecievingECSpec”, which is the
ECSpec name of our EBProc, is returned then the PE will execute an ALE
undefine(“RecievingECSpec”) command and a define(“RecievingECSpec”,
ECSpec) ALE command, one following the other, so as to achieve the Update of
the ECSpec. If the “RecievingECSpec” is not returned then the PE will execute an
ALE define(“RecievingECSpec”, ECSpec) command only.

EPC Information Service Setup
The next thing that ASPIRE’s PE takes care of is, the retrieval from the APDL and
configuration to the AspireRFID of the EBPRoc’s Master Data. For the EBProc the
Disposition, Transaction Type, Read Point and Business Step are retrieved and
saved one by one, if they do not priory exist, from the given
“EPCISMasterDataDocument” [8] shown in Error! Reference source not
found. Error! Reference source not found. to the EPCIS repository thru the
ASPIRE’s EPCIS MasterData capture Interface.
So in our case we have for:
Disposition: urn:epcglobal:fmcg:disp:in_progress
Transaction Type: urn:epcglobal:fmcg:btt:receiving
Read Point: urn:epcglobal:fmcg:loc:rp:warehouse1docdoor
And Business Step: urn:epcglobal:fmcg:bizstep:receiving

 <apdl:DataField
 type="EPCISMasterDataDocument" name="RecievingMasterData">
 <epcismd:EPCISMasterDataDocument>
 <EPCISBody>
 <VocabularyList>
 <Vocabulary
 type="urn:epcglobal:epcis:vtype:BusinessTransaction">
 <VocabularyElementList>
 <VocabularyElement
 id=" urn:epcglobal:fmcg:bte:acmewarehouse1receive">
 <attribute
 id="urn:epcglobal:epcis:mda:event_name"> Warehouse1DocDoorReceive
 </attribute>
 <attribute
 id="urn:epcglobal:epcis:mda:event_type"> ObjectEvent
 </attribute>
 <attribute
 id="urn:epcglobal:epcis:mda:business_step">
 urn:epcglobal:fmcg:bizstep:receiving
 </attribute>
 <attribute
 id="urn:epcglobal:epcis:mda:business_location">
 urn:epcglobal:fmcg:loc:acme:warehouse1
 </attribute>
 <attribute
 id="urn:epcglobal:epcis:mda:disposition">
 urn:epcglobal:fmcg:disp:in_progress
 </attribute>
 <attribute
 id="urn:epcglobal:epcis:mda:read_point">

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 33/51

 urn:epcglobal:fmcg:loc:rp:warehouse1docdoor
 </attribute>
 <attribute
 id="urn:epcglobal:epcis:mda:transaction_type">
 urn:epcglobal:fmcg:btt:receiving
 </attribute>
 <attribute
 id="urn:epcglobal:epcis:mda:action">OBSERVE
 </attribute>
 </VocabularyElement>
 </VocabularyElementList>
 </Vocabulary>
 </VocabularyList>
 </EPCISBody>
 </epcismd:EPCISMasterDataDocument>
 </apdl:DataField>

Table 9 EPCISMasterDataDocument DataField

For the Business Transaction EPCIS vocabulary type the hole OLCBProc Structure
is considered and a given EBProc is saved as the Child of it’s CLCBProc and in its
turn as a child of it’s OLCBProc. For the last task the various different Object ID’s
are used to build the aforementioned structure which concludes the Step 7 of the
PE’s configuration process. So the whole “EPCISMasterDataDocument” given in
the EBProc description will be saved at the EPCIS repository which will be a clild
of the it’s OLCBProc (“urn:ow2:aspirerfid:aprod:firstopenloopdescribedprocess”)
and it’s CLCBProc (“urn:epcglobal:fmcg:bti:acmesupplying”) Table 5 above.

BEG Setup
Continuing, the Programmable Engine uses the EPCIS Query End-Point, which
was retrieved from the EBProc’s “ExtededAttributes” above
(“http://localhost:8080/aspireRfidEpcisRepository/query”), and use it to get the
VocabularyElementType [8] (Step 8) for the
“urn:epcglobal:fmcg:bte:acmewarehouse1receive” Elementary Business
Processes (EBProc) ID which “conveniently happens” to be the same as the
BusinessTransaction’s ID that BEG is going to be configured to serve. After that
the PE uses the EPCIS Client Capture End-Point
(“http://localhost:8080/aspireRfidEpcisRepository/capture”) and use the
“startBegForEvent” BEG client Service, with inputs the VocabularyElementType
that was prior retrieved, the “repositoryCaptureURL” and the “begListeningPort”
as shown in Table 4 above (Step 9).

After the aforementioned BEG configuration it is ready to receive ECReports so
the next Step (Step 10) is to Subscribe the “Defined” ECSpec, with the ALE
subscribe(“RecievingECSpec”, “http://localhost:9999”) from the previous step
(Step6), to the BEG Running instance (“ecSpecSubscriptionURI” Table 3).

At this point it worth’s to mention that AspireRFID architecture uses Fosstrak’s
[1] EPCIS and F&C (ALE) implementations that ASPIRE has enhanced and
tailored to meet its needs.

9.2 Decoding Example
(To be implemented and documented in Version 2 of this deliverable)

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 34/51

Section 10 Business Process Workflow Management Editor (BPWME)

Introduction

ASPIRE Architecture introduces a tool, called Business Process Workflow
Management Editor (BPWME) plug-in, which will be part of the AspireRFID IDE
that will be capable of producing APDL files and ultimately configure the
AspireRFID middleware with the help of the Programmable Engine’s Client.

The BPWME will be based on the Eclipse Rich Client Platform (RCP) design, which
is what it is used for the AspireRFID IDE design, and more specifically at the:

• Eclipse Graphical Modeling Framework (GMF), described in Section 10.1
below which combines the:

o Eclipse Modeling Framework (EMF)
o And the Eclipse Graphical Editing Framework (GEF)

A first flavor of this tool is provided in Figure 7 below where someone can
distinguish the main Design tab, the Diagrams outline, the Properties and the
Toolbox. At the Design tab a pallet is provided, with APDL’s main components,
which a User can drag and drop inside the design area. As soon as the User
clicks on a component inside the design area its properties appears at the
Property tab where they can be changed. If the design gets too big the user can
be navigated from the Outline tab where he can choose the area that appears in
at the Design tab.

Figure 7 BPWME plug-in

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 35/51

The Programmable Engine’s client will be embedded in this tool so as to achieve
the direct Encoding of the AspireRFID middleware as soon as an APDL xml file is
created. The ability of real time interaction of the BPWME plug-in thru the PE’s
“encode” and “decode” Interface will be investigated. Moreover the possibility of
basing the End-to-End management interface on the BPWME will be investigated
as the design and the abilities of the tool matures in time.

The task of Designing and Implementing the BPWME plug-in, as it does not have
a deliverable dedicated to it, it will be reported to the Deliverables D4.4b, D3.5,
D4.2b and D4.5.

10.1 Graphical Modeling Framework

GMF (Graphical Modeling Framework) is a framework for creating a generic
graphical interface in eclipse by combining EMF (Eclipse Modeling Framework)
and GEF (Graphical Editing Framework) technology together. The output of a
GMF project can be an RCP application or an Eclipse plug-in. The Figure 8 below
shows the main components and models used during GMF-based development.

Figure 8 Main components and models used during GMF-based development [25]

To create a GMF project successfully, first we should define the domain model. For the
Aspire project, the domain model is given by the APDL Specification [24]. Since we only
need to care about the objects we are going to present in the editor, we simplify the APDL
Specification as the following model also shown in Figure 9 below. In this model we create
three new abstract objects for the editor:

• the WorkflowMap,
• the Node,
• and the Connection.

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 36/51

The WorkflowMap is the root of the whole editor canvas, which includes other nodes and
edges. The Node is an abstraction of all the nodes on the editor. The Connection is a direct
edge between two Nodes, which creates the relationship between the Nodes.

Figure 9 APDL’s GMF abstract objects

Guided by the project dashboard, we can then define the tool palette, the figures we want to
show in the editor, and the mapping between the domain model and the figures. Then we do
the code generation. During each step, there are several choices we can make to adjust the
configuration of the project. At last, we may modify the code itself to reflect exactly our own
needs.

We mainly have three jobs when modifying the code.

1. Introduce APDL Specification file to the system. Let it work with the existing model file
and map file consistently.

2. Introduce other editing policies for editing EBProc process.
3. And finally let the editor work with Aspire RFID IDE seamlessly.

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 37/51

Section 11 Current Implementation Status / Future Steps

11.1 Current Implementation Status

This deliverable describes the Specification and Implementation of the
AspireRFID Programmable Engine which is going to be provided in two versions.
In the first version the Programmable Engine provides:

• The “Encode” API design which is documented in this deliverable and its
implementation which is uploaded to ASPIRE’s SVN repository
(http://forge.ow2.org/plugins/scmsvn/index.php?group_id=324)

• The “Decode” API design which is documented in this deliverable.
• For configuring the Programmable Engine the time this deliverable is

written a Fat Client is used based on Java SWT.
• And a first approach of designing and implementing the Business Process

Workflow Management Editor (BPWME) plug-in which is briefly described
in Section 10 above.

11.2 Future Steps

In the second version of this deliverable the “Decode” API implementation
description will be provided and the actual implementation will be uploaded to
the ASPIRE’s SVN repository
(http://forge.ow2.org/plugins/scmsvn/index.php?group_id=324). The
Configuration Client will be embedded to the AspireRFID IDE and will also be part
of the BPWME. The “Encode” implementation will also be updated based on the
evolution of the PE and the ASPIRE needs. Moreover as far as the BPWME plug-in
is concerned a more throw description of the design and implementation will be
provided and the source code will also be uploaded to the ASPIRE SVN
repository. Also the ability of real time interaction of the BPWME plug-in thru the
PE’s “encode” and “decode” Interface will be investigated and the possibility of
basing the End-to-End management interface on the BPWME plug-in will be
investigated also as the design and the abilities of the tool matures in time.

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 38/51

Section 12 Conclusions

The deliverable has outlined the specifications of the ASPIRE programmable
engine and demonstrated its features aiming at easing the configuration of
ASPIRE solutions. In a nutshell the programmable engine offers users to deploy
RFID solutions through working on high level business logic rather than writing
significant amounts of low-level programming statements. The deployment is
facilitated by the use of a defined business scenario using a business process
language (APDL) where the programmable engine encodes them and converts
them into a language understandable by the middleware.

The deliverable also outlines both the interfaces; ‘Encode’ and ‘Decode’ of the
Aspire Programmable Engine. Furthermore, details of how the PE communicates
with other ASPIRE RFID modules are also portrayed. While the implementation of
the ‘Encode’ API has been implemented and documented along this deliverable.
The implementation and documentation of the ‘Decode’ API will be conducted
and documented in the final version of the deliverable due M36. A short
comparison of how the PE eases and speeds up the development of RFID solution
is also presented. In conjunction with this a small example of the programmable
engine is also presented towards the end of the report.

This deliverable is an interim version and will be augmented in its next version
D4.2b due M36.

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 39/51

Section 13 List of Figures

Figure 1 APDL’s Schema graphical representation .. 11
Figure 2 Programmable Engine role in the AspireRFID Architecture 12
Figure 3 Layers and interfaces concerning the EPCIS [8] ... 15
Figure 4 Programmable Engine’s Encode Steps ... 18
Figure 5 Required AspireRFID Configuring Steps without Programmable Engine 25
Figure 6 Required AspireRFID Configuring Steps with Programmable Engine 26
Figure 7 BPWME plug-in .. 34
Figure 8 Main components and models used during GMF-based development [25] 35
Figure 9 APDL’s GMF abstract objects .. 36

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 40/51

Section 14 List of Tables

Table 1 PE’s Encode Interface methods .. 16
Table 2 PE’s Decode Interface methods .. 17
Table 3 ProcessedEBProc Object ... 20
Table 4 BEG server Web Service Interface ... 22
Table 5 CLCBProc Object [Encoding APDL Example] ... 28
Table 6 AcmeWarehouse3Ship EBProc .. 29
Table 7 LRSpec DataField ... 30
Table 8 ECSpec DataField ... 31
Table 9 EPCISMasterDataDocument DataField .. 33

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 41/51

Section 15 List of Acronyms

ALE Application Level Event
APDL AspireRFID Process Description Language
API Application Program Interface
ASPIRE Advanced Sensors and lightweight Programmable middleware for

Innovative Rfid Enterprise applications
BEG Business Event Generator
BPWME Business Process Workflow Management Editor
BTB Bluetooth Bridge
CC Connector Client
CE Connector Engine
CLCBProc Close Loop Composite Business Process
DNS Directory Name Service
EBProc Elementary Business Process
EPC Electronic Product Code
EPCIS Electronic Product Code Information Services
ERP Enterprise Resource Planning
F&C Filtering and Collection
GIAI Global Individual Asset Identifier
GLN Global Location Number
GPS Global Positioning System
GRAI Global Returnable Asset Identifier
GS1 Global Standard 1 (Standardisation group)
GTIN Global Trade Identification Number
HAL Hardware Abstraction Layer
HTTP HiperText Transfer Protocol
IDE Integrated Development Environment
IP Internet Protocol
IS Information System or Information Service
ISO International Standard Organization
IT Information Technology
J2ME Java 2 Micro Edition
JAS Java Application Server
JAXB Java Architecture for XML Binding
JaxWS Java web server
JCA Java Connector Architecture
JCP Java Community Process
JMS Java Messaging Service
JMX Java Management Extensions
JVM Java Virtual Machine
LGPL Lesser General Public License
LLRP Low Level Reader Protocol
ODBC Object Database Connectivity
OLCBProc Open Loop Composite Business Process
ONS Object Name Service
OSI Open System Interconnection

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 42/51

OSS Open Source Software
OW2 Open source community which is the merge of the ObjectWeb

Consortium and Orientware)
PE Programmable Engine
RDBMS Relational database management system
RFID Radio Frequency Identification
RP Reader Protocol
SME Small and Medium Enterprise
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SOAP Simple Object Access Protocol
SSCC Serial Shipping Container Code
SVN Subversion
TCO Total Cost of Ownership
TCP Transfer Control Protocol
TDS Tag Data Standard
TDT Tag Data Translation
UML Universal Mark-up Language
URI Uniform Resource Identifier
URN Uniform Resource Name
WMS Warehouse Management System
XML Extensible Markup Language

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 43/51

Section 16 References and bibliography

[1] FossTrak Project, http://www.fosstrak.org/index.html
[2] EPCglobal, “The Application Level Events (ALE) Specification, Version 1.1”,

February. 2008, available at: http://www.epcglobalinc.org/standards/ale
[3] EPCglobal, “Low Level Reader Protocol (LLRP), Version 1.0.1, August 13”,

2007, available at: http://www.epcglobalinc.org/standards/llrp
[4] EPCglobal, “Reader Protocol Standard, Version 1.1, June 21”, 2006 available

at: http://www.epcglobalinc.org/standards/rp
[5] EPCglobal, “Reader Management 1.0.1, May 31”, 2007 available at:

http://www.epcglobalinc.org/standards/rm
[6] EPCglobal, “EPCglobal Tag Data Standards, Version 1.4”, June 11, 2008,

available at: http://www.epcglobalinc.org/standards/tds/
[7] EPCglobal, “EPCglobal Tag Data Translation (TDT) 1.0”, January 21, 2006

available at: http://www.epcglobalinc.org/standards/tdt/
[8] EPC Information Services (EPCIS) Specification, Version 1.0.1, September 21,

2007 available at: http://www.epcglobalinc.org/standards/epcis/
[9] LLRP Toolkit, http://www.llrp.org/
[10] Matthias Lampe, Christian Floerkemeier, “High-Level System Support for

Automatic-Identification Applications”, In: Wolfgang Mass, Detlef Schoder,
Florian Stahl, Kai Fischbach (Eds.): Proceedings of Workshop on Design of
Smart Products, pp. 55-64, Furtwangen, Germany, March 2007.

[11] C.Floerkemeier, C. Roduner, and M. Lampe, RFID Application Development
With the Accada Middleware Platform, IEEE Systems Journal, Vol. 1, No. 2,
December 2007.

[12] C. Floerkemeier and S. Sarma, “An Overview of RFID System Interfaces
and Reader Protocols”, 2008 IEEE International Conference on RFID, The
Venetian, Las Vegas, Nevada, USA, April 16-17, 2008.

[13] Russell Scherwin and Jake Freivald, Reusable Adapters: The Foundation of
Service-Oriented Architecture, 2005.

[14] The XMOJO Project Product Documentation, available at:
http://www.jmxguru.com/products/xmojo/docs/index.html

[15] Java Management Extensions (JMX) Technology Overview, available at:
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/overview/architecture.html

[16] Panos Dimitropoulos and John Soldatos, ‘RFID-enabled Fully Automated
Warehouse Management: Adding the Business Context’, submitted to the
International Journal of Manufacturing Technology and Management (IJMTM),
Special Issue on: "AIT-driven Manufacturing and Management".

[17] Architecture Review Committee, “The EPCglobal Architecture Framework,”
EPCglobal, July 2005, available at: http://www.epcglobalinc.org.

[18] Achilleas Anagnostopoulos, John Soldatos and Sotiris G. Michalakos,
‘REFiLL: A Lightweight Programmable Middleware Platform for Cost Effective
RFID Application Development’, accepted for publication to the Journal of
Pervasive and Mobile Computing (Elsevier).

[19] WS-I, Basic Profile v1.0, available at: http://www.ws-
i.org/Profiles/BasicProfile-1.0-2004-04-16.html.

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 44/51

[20] Benita M. Beamon, “Supply chain design and analysis: Models and
methods”, International Journal of Production Economics, Vol. 55 pp. 281-
294, 1998

[21] John Soldatos, Nikos Kefalakis, Nektarios Leontiadis, et. al., “Core ASPIRE
Middleware Infrastructure”, ASPIRE Project Public Deliverable D3.4a, Jun
2009, publicly available at:
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/Deliverables

[22] Efstathios Mertikas, Nikos Kefalakis and John Soldatos, “Managing Master
Data and Business Events in an RFID Network”, Submitted to the Pervasive
and Mobile Computing Journal (Elsevier), September 2009

[23] John Soldatos, Nikos Kefalakis, Nektarios Leontiadis, et. al.,
“Programmable Filters – FML Specification”, ASPIRE Project Public Deliverable
D4.3b, Dec 2009, publicly available at:
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/Deliverables

[24] Nikos Kefalakis, John Soldatos, Sofoklis Efremidis, et. al., “Programmable
RFID Solutions Specification”, ASPIRE Project Public Deliverable D4.4a, Sept
2009, publicly available at:
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/Deliverables

[25] “Eclipse Graphical Modeling Framework Tutorial”, available at:
http://wiki.eclipse.org/GMF_Tutorial

[26] “CXF Servlet Transport”, available at: http://cxf.apache.org/docs/servlet-
transport.html

[27] Workflow Management Coalition Workflow Standard, “Workflow Process
Definition Interface -- XML Process Definition Language V1.0”, Document
Number WFMC-TC-1025, October 25, 2002

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 45/51

Appendix I APDL XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" targetNamespace="urn:ow2:aspirerfid:apdlspec:xsd:1"
 xmlns:ale="urn:epcglobal:ale:xsd:1" xmlns:alelr="urn:epcglobal:alelr:xsd:1"
 xmlns:apdl="urn:ow2:aspirerfid:apdlspec:xsd:1"
 xmlns:epcismd="urn:epcglobal:epcis-masterdata:xsd:1"
 xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0">

 <xs:import namespace="urn:epcglobal:alelr:xsd:1"
 schemaLocation="resources/epcglobal/EPCglobal-ale-1_1-alelr.xsd"></xs:import>
 <xs:import namespace="urn:epcglobal:ale:xsd:1"
 schemaLocation="resources/epcglobal/EPCglobal-ale-1_1-ale.xsd"></xs:import>
 <xs:import namespace="urn:epcglobal:epcis-masterdata:xsd:1"
 schemaLocation="resources/epcglobal/EPCglobal-epcis-masterdata-1_0.xsd"></xs:import>
 <xs:import namespace="http://www.wfmc.org/2002/XPDL1.0"
 schemaLocation="resources/XPDL.xsd"></xs:import>
 <xs:element name="OLCBProc" type="apdl:OLCBProc" />
 <xs:element name="CLCBProc" type="apdl:CLCBProc" />
 <xs:element name="EBProc" type="apdl:EBProc" />

 <xs:complexType name="OLCBProc">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="apdl:CLCBProc" />
 <xs:element ref="xpdl:Transitions" />
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:anyURI" />
 <xs:attribute name="name" use="required"
 type="xs:NCName" />
 </xs:complexType>

 <xs:complexType name="CLCBProc">
 <xs:sequence>
 <xs:element ref="xpdl:Description" />
 <xs:element maxOccurs="unbounded" ref="apdl:EBProc" />
 <xs:element ref="xpdl:Transitions" />
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:anyURI" />
 <xs:attribute name="name" use="required"
 type="xs:NCName" />
 </xs:complexType>

 <xs:complexType name="EBProc">
 <xs:sequence>
 <xs:element ref="xpdl:Description" />
 <xs:element ref="xpdl:TransitionRestrictions" />
 <xs:element ref="xpdl:ExtendedAttributes" />
 <xs:element ref="apdl:DataFields" />
 </xs:sequence>
 <xs:attribute name="id" type="xs:anyURI" />
 <xs:attribute name="name" type="xs:NCName" />
 </xs:complexType>

 <xs:element name="DataFields">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="3" maxOccurs="unbounded"
 ref="apdl:DataField" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="DataField">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="ale:ECSpec" />
 <xs:element ref="epcismd:EPCISMasterDataDocument" />

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 46/51

 <xs:element ref="alelr:LRSpec" />
 </xs:choice>
 <xs:attribute name="name" use="required"
 type="xs:NCName" />
 <xs:attribute name="type" use="required"
 type="xs:NCName" />
 </xs:complexType>
 </xs:element>

</xs:schema>

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 47/51

Appendix II APDL files

Encoding APDL Example

<?xml version="1.0" encoding="UTF-8"?>

<apdl:OLCBProc
 id="urn:ow2:aspirerfid:aprod:firstopenloopdescribedprocess"
 name="AcmeSupplyChainManagement" xmlns:ale="urn:epcglobal:ale:xsd:1"
 xmlns:alelr="urn:epcglobal:alelr:xsd:1" xmlns:apdl="urn:ow2:aspirerfid:apdlspec:xsd:1"
 xmlns:epcglobal="urn:epcglobal:xsd:1" xmlns:epcis="urn:epcglobal:epcis:xsd:1"
 xmlns:epcismd="urn:epcglobal:epcis-masterdata:xsd:1"
 xmlns:p="http://www.unece.org/cefact/namespaces/StandardBusinessDocumentHeader"
 xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:ow2:aspirerfid:apdlspec:xsd:1 ../AspireSpesificationLanguage.xsd ">

 <apdl:CLCBProc id="urn:epcglobal:fmcg:bti:acmesupplying"
 name="CompositeBusinessProcessName">
 <xpdl:Description>Acme Supply Chain</xpdl:Description>

 <apdl:EBProc Id="CLCBProcEnd" Name="CLCBProcEnd">
 <xpdl:Description />
 <xpdl:TransitionRestrictions>
 <xpdl:TransitionRestriction>
 <xpdl:Join Type="XOR" />
 </xpdl:TransitionRestriction>
 </xpdl:TransitionRestrictions>
 <xpdl:ExtendedAttributes>
 <xpdl:ExtendedAttribute Name="XOffset" Value="623" />
 <xpdl:ExtendedAttribute Name="YOffset" Value="202" />
 </xpdl:ExtendedAttributes>
 </apdl:EBProc>

 <apdl:EBProc Id="CLCBProcStart" Name="CLCBProcStart">
 <xpdl:Description />
 <xpdl:TransitionRestrictions>
 <xpdl:TransitionRestriction>
 <xpdl:Join Type="AND" />
 </xpdl:TransitionRestriction>
 </xpdl:TransitionRestrictions>
 <xpdl:ExtendedAttributes>
 <xpdl:ExtendedAttribute Name="XOffset" Value="47" />
 <xpdl:ExtendedAttribute Name="YOffset" Value="196" />
 </xpdl:ExtendedAttributes>
 </apdl:EBProc>

 <apdl:EBProc
 id="urn:epcglobal:fmcg:bte:acmewarehouse1receive" name="AcmeWarehouse3Ship">

 <xpdl:Description>Acme Warehouse 3 Receiving
 ReadPoint5 Gate3
 </xpdl:Description>
 <xpdl:TransitionRestrictions>
 <xpdl:TransitionRestriction>
 <xpdl:Join Type="AND" />
 </xpdl:TransitionRestriction>
 </xpdl:TransitionRestrictions>
 <xpdl:ExtendedAttributes>
 <xpdl:ExtendedAttribute Name="XOffset"
 Value="204" />
 <xpdl:ExtendedAttribute Name="YOffset"
 Value="204" />
 <xpdl:ExtendedAttribute Name="CellHeight"
 Value="30" />
 <xpdl:ExtendedAttribute Name="CellWidth"
 Value="313" />
 <xpdl:ExtendedAttribute Name="ECSpecSubscriptionURI"

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 48/51

 Value="http://localhost:9999" />
 <xpdl:ExtendedAttribute Name="AleClientEndPoint"
 Value="http://localhost:8080/aspireRfidALE/services/ALEService" />
 <xpdl:ExtendedAttribute Name="AleLrClientEndPoint"
 Value="http://localhost:8080/aspireRfidALE/services/ALELRService" />
 <xpdl:ExtendedAttribute Name="EpcisClientCaptureEndPoint"
 Value="http://localhost:8080/aspireRfidEpcisRepository/capture" />
 <xpdl:ExtendedAttribute Name="EpcisClientQueryEndPoint"
 Value="http://localhost:8080/aspireRfidEpcisRepository/query " />

 </xpdl:ExtendedAttributes>
 <apdl:DataFields>
 <apdl:DataField type="EPCISMasterDataDocument"
 name="RecievingMasterData">
 <epcismd:EPCISMasterDataDocument>
 <EPCISBody>
 <VocabularyList>
 <Vocabulary

 type="urn:epcglobal:epcis:vtype:BusinessTransaction">
 <VocabularyElementList>
 <VocabularyElement
 id="urn:epcglobal:fmcg:bte:acmewarehouse1receive">
 <attribute
 id="urn:epcglobal:epcis:mda:event_name">Warehouse1DocDoorReceive
 </attribute>

 <attribute id="urn:epcglobal:epcis:mda:event_type">
 ObjectEvent
 </attribute>
 <attribute id="urn:epcglobal:epcis:mda:business_step">
 urn:epcglobal:fmcg:bizstep:receiving
 </attribute>
 <attribute id="urn:epcglobal:epcis:mda:business_location">
 urn:epcglobal:fmcg:loc:acme:warehouse1
 </attribute>
 <attribute id="urn:epcglobal:epcis:mda:disposition">
 urn:epcglobal:fmcg:disp:in_progress
 </attribute>
 <attribute id="urn:epcglobal:epcis:mda:read_point">
 urn:epcglobal:fmcg:loc:rp:warehouse1docdoor
 </attribute>
 <attributeid="urn:epcglobal:epcis:mda:transaction_type">
 urn:epcglobal:fmcg:btt:receiving
 </attribute>
 <attribute id="urn:epcglobal:epcis:mda:action">OBSERVE
 </attribute>
 </VocabularyElement>
 </VocabularyElementList>
 </Vocabulary>
 </VocabularyList>
 </EPCISBody>
 </epcismd:EPCISMasterDataDocument>
 </apdl:DataField>

 <apdl:DataField type="ECSpec" name="RecievingECSpec">
 <ale:ECSpec includeSpecInReports="false">
 <logicalReaders>
 <logicalReader>SmartLabImpinjSpeedwayLogicalReader
 </logicalReader>
 </logicalReaders>
 <boundarySpec>
 <repeatPeriod unit="MS">4500
 </repeatPeriod>
 <duration unit="MS">4500</duration>
 <stableSetInterval unit="MS">0
 </stableSetInterval>
 </boundarySpec>
 <reportSpecs>

 <reportSpec reportOnlyOnChange="false"
 reportName="bizTransactionIDs" reportIfEmpty="true">
 <reportSet set="CURRENT" />

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 49/51

 <filterSpec>
 <includePatterns>
 <includePattern>urn:epc:pat:gid-96:145.12.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true"
 includeCount="true" />
 </reportSpec>
 <!--
 For the required ECReportID we will use the EBPSpec id
 -->
 <reportSpec reportOnlyOnChange="false"
 reportName="transactionItems" reportIfEmpty="true">
 <reportSet set="ADDITIONS" />
 <filterSpec>
 <includePatterns>
 <includePattern>urn:epc:pat:gid-96:145.233.*
 </includePattern>
 <includePattern>urn:epc:pat:gid-96:145.255.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true"
 includeCount="true" />
 </reportSpec>
 </reportSpecs>
 <extension />
 </ale:ECSpec>
 </apdl:DataField>

 <apdl:DataField type="LRSpec"
 name="SmartLabImpinjSpeedwayLogicalReader">
 <alelr:LRSpec>
 <isComposite>false</isComposite>
 <readers />
 <properties>
 <property>
 <name>Description</name>
 <value>This Logical Reader consists of read
 point 1,2,3
 </value>
 </property>
 <property>
 <name>ConnectionPointAddress
 </name>
 <value>192.168.212.238</value>
 </property>
 <property>
 <name>ConnectionPointPort</name>
 <value>5084</value>
 </property>
 <property>
 <name>ReadTimeInterval</name>
 <value>1000</value>
 </property>
 <property>
 <name>PhysicalReaderSource
 </name>
 <value>1,2,3</value>
 </property>
 <property>
 <name>RoSpecID</name>
 <value>1</value>
 </property>
 <property>
 <name>ReaderType</name>

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 50/51

 <value>
 org.ow2.aspirerfid.ale.server.readers.llrp.LLRPAdaptor
 </value>
 </property>
 </properties>
 </alelr:LRSpec>
 </apdl:DataField>
 </apdl:DataFields>

 </apdl:EBProc>

 <xpdl:Transitions>
 <xpdl:Transition Id="Start_Warehouse3RecievingGate3"
 Name="Start_Warehouse3RecievingGate3" From="CLCBProcStart"
 To="urn:epcglobal:fmcg:bte:acmewarehouse3ship" />
 <xpdl:Transition Id="Warehouse3RecievingGate3_End"
 Name="Warehouse3RecievingGate3_End"
 From="urn:epcglobal:fmcg:bte:acmewarehouse3ship"
 To="CLCBProcEnd" />
 </xpdl:Transitions>
 </apdl:CLCBProc>

</apdl:OLCBProc>

Contract: 215417
Deliverable report – WP4 / D4.2a

ID: Aspire-D4.2a_V1.2Public.doc Date: 14 January 2010
Revision: 1.2 Security: Public
 Page 51/51

Appendix III Soap Interfaces

PE Encode Soap Interface

@WebService(name="ProgrammableEngineEncoderInterface",
targetNamespace="http://encode.programmableengine.aspirerfid.ow2.org/")
public interface ProgrammableEngineEncoderInterface {

 @RequestWrapper (className="org.ow2.aspirerfid.programmableengine.model.OLCBProc")
 @ResponseWrapper(className="java.lang.Integer")
 public Integer encode(@WebParam(name="openLoopCBProc") OLCBProc openLoopCBProc);

}

PE Decode Soap Interface

@WebService(name="ProgrammableEngineDecoderInterface",
targetNamespace="http://decode.programmableengine.aspirerfid.ow2.org/")
public interface ProgrammableEngineDecoderInterface {

 @RequestWrapper (className="java.lang.String")
 @ResponseWrapper(className="org.ow2.aspirerfid.programmableengine.model.OLCBProc")
 public OLCBProc decode(@WebParam(name="openLoopCBProcID") String openLoopCBProcID);

}

