
ASPIRE FP7 215417

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the ASPIRE Consortium. Neither

this document nor the information contained herein shall be used, duplicated or
communicated by any means to any third party, in whole or in parts, except with prior written

consent of the ASPIRE consortium.

Collaborative Project

ASPIRE
Advanced Sensors and lightweight Programmable

middleware for Innovative Rfid Enterprise applications

FP7 Contract: ICT-215417-CP

WP4 – RFID Middleware programmability

Public report - Deliverable

Programmable RFID Solutions Specification

Due date of deliverable: M30
Actual Submission date:

Deliverable ID: WP4/D4.4b

Deliverable Title:
Programmable RFID Solutions Specification (Final
Version)

Responsible partner: AIT

Contributors:

Nikos Kefalakis - AIT
John Soldatos - AIT
Sofoklis Efremidis - AIT
Yongming Luo - AIT
Nikolaos Konstantinou - AIT
Sofyan Mohammad Yousuf - OSI
Neeli Rashmi Prasad - AAU
Mathieu David - AAU
Didier Donsez - UJF
Kiev Gama - UJF
Gabriel Pedraza - UJF

Estimated Indicative
Person Months:

29

Start Date of the Project: 1 January 2008 Duration: 36 Months

Revision: 1.1
Dissemination Level: PU

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 2/102

Document Information

Document Name: Programmable RFID Solutions Specification
Document ID: WP4/D4.4b
Revision: 1.1
Revision Date: 19 October 2010
Author: AIT
Security: PU

Approvals

 Name Organization Date Visa

Coordinator Neeli Rashmi Prasad CTIF-AAU

Technical
Coordinator

John Soldatos AIT

Quality Manager Anne Bisgaard Pors CTIF-AAU

Reviewers

Name Organization Date Comments Visa

Nathalie Mitton INRIA 24 Jun 10 No Further Comments

Ramiro Samano
Robles

IT 24 Jun 10 Consider Comments

Jean-Phillipe Leclercq PV 24 Jun 10 No Further Comments

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 3/102

Document history

Revision Date Modification Authors
a_0.1 07 July 09 Table of Contents Nikos Kefalakis
a_0.2 20 July 09 Proposed changes to TOC Sofyan Mohammad Yousuf
a_0.3 24 July 09 Final TOC and Edit guidelines Nikos Kefalakis
a_0.4 20 Aug 09 Section 8, Section 5 Nikos Kefalakis
a_0.5 21 Aug 09 Section 3.2, Augmented Section 5.2 Mathieu David
a_0.6 31 Aug 09 Section 3.1, Appendix III Sofyan Mohammad Yousuf
a_0.7 09 Sep 09 Section 2 Sofyan Mohammad Yousuf

a_0.8 13 Sep 09
Section 4.1, Section 4.3, Section 5.3,
Augmented Section 2

Sofoklis Efremidis

a_0.9 14 Sep 09 Section 1, Section 9, revised Section 2 Mathieu David
a_1.0 14 Sep 09 Section 6 Nikos Kefalakis

a_1.1 17 Sep 09
Section 2, Section 4.2, Section 4.4,
Section 4.5 and Augmented Section 5

Didier Donsez, Kiev Gama, Gabriel
Pedraza

a_1.2 18 Sep 09
Augmented Section 5, added
Appendixes and General Corrections

Nikos Kefalakis

a_1.3 22 Sep 09
Final Corrections Considering Internal
Document Review Comments

Nikos Kefalakis

b_0.1 12 May 10 Added Sections 6.1, 6.2, 6.3 and 6.4 Nikos Kefalakis
b_0.2 15 May 10 Added Section 6 Introduction Nikolaos Konstantinou
b_0.3 22 May 10 Augmented/Updated Section 6.5 Nikos Kefalakis

b_0.4 11 Jun 10
Merged a version’s Sections 2 and 3 to
Section 2, Augmented Section 3

Sofyan M. Yousuf

b_0.5 14 Jun 10 Section 1
John Soldatos, Nikos Kefalakis,
Sofyan M. Yousuf

b_0.6 15 Jun 10 Added Section 7.1 Nikos Kefalakis, Yongming Luo
b_0.7 16 Jun 10 Added Section 7.2, Updated Section 8 Nikos Kefalakis
b_0.8 18 Jun 10 Augmented Section 2, Section 9 John Soldatos, Nikos Kefalakis
b_0.9 21 Jun 10 Various corrections to the hole document Nikos Kefalakis
b_1.0 25 Jun 10 Incorporate some Review Comments Sofyan M. Yousuf
b_1.1 27 Jun 10 Final Corrections Nikos Kefalakis

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 4/102

Content

Section 1 Executive Summary .. 7

Section 2 Introduction ... 8

2.1 Domain Specific Languages .. 9

2.2 Separation of Concerns ... 10

2.3 ASPIRE Programmable RFID solutions .. 10

Section 3 Available Models, Workflows and Languages Investigation 13

3.1 General .. 13
3.1.1 Business Process Management ... 13
3.1.2 Workflow patterns ... 16

3.2 Business Process Modeling .. 18
3.2.1 Available Business Processes Workflow Definition Concepts 19

3.2.1.1 Business Process Definition Metamodel ... 19
3.2.1.2 Business Process Modeling Notation ... 19

3.2.1.2.1 BPMN overview .. 20
3.2.1.2.2 BPMN uses ... 20
3.2.1.2.3 Types of BPMN Diagram .. 21
3.2.1.2.4 Business Process Diagrams ... 22

3.2.2 Activity Diagram (UML) another modeling tool such as BPMN 23
3.2.3 Programming languages for BPM ... 24

3.2.3.1 Business Process Modeling Language ... 24
3.2.3.2 Business Process Execution Language .. 25
3.2.3.3 XML Process Definition Language (XPDL) ... 25
3.2.3.4 Yet Another Workflow Language (YAWL) ... 26
3.2.3.5 Abstract Process Execution Language (APEL) UJF 27

Section 4 Available OSS XPDL Editors Investigation .. 29

4.1 Enhydra JaWE .. 29
4.1.1 Pros .. 30
4.1.2 Cons ... 30

4.2 Nova Bonita ... 31
4.2.1 Pros .. 31
4.2.2 Cons ... 31

4.3 Eclipse Java Workflow Tooling ... 32
4.3.1 Pros .. 32
4.3.2 Cons ... 33

4.4 YAPROC .. 33
4.4.1 Pros .. 33
4.4.2 Cons ... 34

4.5 FOCAS ... 34
4.5.1 Pros .. 34
4.5.2 Cons ... 35

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 5/102

Section 5 Selecting the most Suitable for an RFID Language Specification 36

5.1 RFID Language Specification Requirements ... 36

5.2 Comparison of available Process Languages ... 37

5.3 Decision ... 38

Section 6 AspireRFID Process Description Language (APDL) 40

6.1 The Required Components/Layers ... 41

6.2 Defining APDL’s Business Process.. 42

6.3 Generating Business Logic ... 43

6.4 Programmable Meta-Language Structure .. 44

6.5 Programmable Meta-Language Definition .. 48
6.5.1 APDL Main Elements .. 48

6.5.1.1 Open Loop Composite Business Process (OLCBProc) 48
6.5.1.2 Close Loop Composite Business Process (CLCBProc) 49
6.5.1.3 Elementary Business Process (EBProc) ... 51

6.5.1.3.1 TransitionRestrictions Element ... 52
6.5.1.3.2 ExtendedAttributes Element ... 53

6.5.1.3.2.1 ExtendedAttribute Element .. 54
6.5.1.3.3 DataFields Element ... 55

6.5.1.3.3.1 DataField Element .. 55
6.5.1.3.4 EBProc’s Complex Data Types ... 57

6.5.1.3.4.1 EPCISMasterDataDocument ... 57
6.5.1.3.4.2 ECSpec .. 59
6.5.1.3.4.3 LRSpec .. 59

6.5.2 Transitions .. 59
6.5.3 Basic Elements ... 62

6.5.3.1 Description .. 62

Section 7 Tools that facilitates APDL’s Usability ... 63

7.1 Business Process Workflow Management Editor (BPWME) 63

7.2 Programmable Engine ... 68

Section 8 Describing an RFID Workflow Process using APDL 70

8.1 Overview .. 70

8.2 Describing the Problem ... 70

8.3 Solution Requirements .. 70

8.4 Building the Required APDL Specification File ... 71
8.4.1 Filtering and collection Module Required Data Fields .. 73

8.4.1.1 ECSpec definition ... 73
8.4.1.2 LRSpec Definition ... 75

8.4.2 BEG Module Required Data Field .. 76

8.5 Process Description ... 77

Section 9 Conclusions .. 79

Section 10 List of Acronyms .. 80

Section 11 List of Figures ... 82

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 6/102

Section 12 List of Tables ... 83

Section 13 References and bibliography .. 84

APPENDIXES .. 89

APPENDIX I. ACME’s Complete APDL Solution XML ... 89

APPENDIX II. APDL Schema .. 95

APPENDIX III. Control-Flow Perspective of Workflow Systems Patterns 97
I. Basic Control Flow Patterns ... 97
II. Advanced Branching and Synchronization Patterns... 98
III. Structural Patterns .. 99
IV. Patterns with multiple instances ... 100
V. State based patterns .. 101
VI. Cancellation patterns .. 102

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 7/102

Section 1 Executive Summary

Despite the proliferation of RFID systems and applications, there is still no easy
way to develop, integrate and deploy non-trivial RFID solutions. Indeed, the
latter comprise various middleware modules (e.g., data collection and filtering,
generation of business events, integration with enterprise applications), which
must be deployed and configured independently. In this deliverable we introduce
APDL, an XML based specification for describing and configuring RFID solutions.
We present the final work involved in investigating and producing the meta-
languages for defining; configuring and deploying RFID based solutions. This final
version includes the part of the RFID domain specific language specifying the
composition of filters, devices, readers, corporate databases, business services
etc. into fully fledged RFID solutions.

After analysis of available workflow supporting languages we concluded that they
are rather general as they have been designed to model a variety of workflow
environments capturing thus most of the well known business processes. Thus
specialized concepts like RFID-based processes and RFID related data were
rather cumbersome to express in general purpose workflow modeling languages.
XPDL would probably be the most appropriate candidate to use taking in
considerations the RFID language requirements but following the same
requirements due to the generality and complexity of XPDL for describing an
RFID Open Loop Business Process is not preferred.

Therefore the need for a new special purpose modeling language that will be able
to represent in a clean way RFID related concepts and a workflow editor that
would accompany it forced us to design such a Domain Specific Language that
uses many of the XPDL’s notions but with a different structure which we have
named APDL (ApireRFID Process Description Language). APDL is an XPDL hybrid
that is simpler to understand, to describe its structure and is specializes on RFID
Data and Business Process modeling.

In this regard, the Programmable Meta-Language is a combination of the
following Specifications; Logical Readers Specs, ECSpecs, Master Data
Document, Middleware Management/Configuration Data and Business Workflow
data. All the above are augmented with design data (like XPDL) for the
visualization of the RFID solution to the BPWME (Business Process Workflow
Management Editor).

Using APDL one can minimize the steps and effort required to integrate and
configure an RFID solution, since it unifies all the configuration parameters and
steps comprising an RFID deployment. APDL supports several configuration
parameters defined in the scope of the EPCglobal architecture and related
standards. However, it extends beyond the EPCglobal architecture, to a wider
class of RFID solutions. Furthermore, APDL is amendable by visual tools, which
obviates the need to carry out low-level programming tasks in order to deploy an
RFID solution. These tools are also presented in this deliverable.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 8/102

Section 2 Introduction

We are currently witnessing a proliferation of RFID (Radio Frequency
Identification) applications, in a wide range of fields including logistics, trade and
industry. These applications are the first step towards the realization of long
awaited visions such as pervasive computing [1], machine-to-machine
communications [2], as well as the Internet-of-Things (IoT) [3]. While RFID
technology is based on simple operational principles, the complete design and
implementation of any non-trivial RFID solution is still a very arduous and
resource consuming task. Indeed, non-trivial RFID applications comprise typically
multiple readers and tags, as well as multiple consuming applications in a highly
heterogeneous landscape [4]. In this landscape, different tag information
streams have to be routed across different business applications, according to
sets of complex business rules. Given this complexity, the development of RFID
solutions is nowadays facilitated by middleware infrastructures, which undertake
to interface to heterogeneous readers, filter the tag streams, generate
application specific events, and eventually route these events to the appropriate
business applications.

A variety of both proprietary (e.g., [5], [6]) and standard-based middleware
infrastructures for RFID systems have recently emerged (e.g., [4]). The most
prominent effort in the area of standardized middleware infrastructure is the
architectural framework specified by EPCglobal [10], which specifies several
standards [11] and related middleware building blocks for building RFID systems
for logistics and warehouse management. However, even with such middleware
frameworks at hand, RFID solution developers and integrators have to allocate
significant effort in the process of configuring and integrating the various
middleware building blocks. The practical implication in this fact is that RFID
applications developers must still engage with low-level programming tasks in
order to successfully build, configure and deploy an RFID solution [6]. Most of
this effort relates to the need for configuring the middleware building blocks of
the application [7], while at the same time ensuring the interworking and
interoperability of these building blocks.

The above-mentioned problems and challenges stem from the lack of a standard
way for specifying an integrated RFID solution. Despite the emergence of several
middleware standards, there is no easy and accepted way for specifying the
middleware elements of an RFID solution. Furthermore, there are no formal
proposals for integrating the standard middleware blocks of an RFID solution.
Indeed, a single specification for describing an RFID solution could greatly
alleviate the task of specifying, configuring and implementing an RFID solution.
This is because a single RFID solution specification could obviate the need for
configuring and integrating multiple middleware blocks, based on a variety of
specifications and XML configuration files, each one pertaining to a specific
middleware block.

Motivated by the above challenges, this deliverable defines the specification of a
meta-language for describing RFID solutions, and illustrates how it eases the

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 9/102

configuration and deployment of non-trivial RFID solutions. The specification is
defined as an XML-based domain specific language for describing RFID-based
processes and is conveniently called APDL (AspireRFID Process Description
Language).

Generally language oriented programming [74] provides an approach for solving
problems using a language suited to a given problem domain. It is a sort of
metaprogramming using domain specific languages created by programmers,
who map the concepts of the problem domain (e.g. an RFID reader, a
configuration file, a sensor) to be expressed in that language. After having such
language modeled, the programmer then tries to solve its problem in his/her
domain by using that custom language instead of a general purpose
programming language (e.g. Java, C). This is exactly what ASPIRE peruses to
achieve for the end user (RFID integrator, SME owner). So as someone would be
capable to do a high level description of the requirements with a specific Meta
Language and the system would handle the rest without the need of a specialized
programmer.

Important concepts brought by such approach are the Domain Specific
Languages (DSL) themselves and the concept of separation of concerns, which
are detailed in the next sections

2.1 Domain Specific Languages

Instead of being general such as, for example, Java and C languages, DSLs focus
on expressiveness in a limited domain. By providing notations and constructs
custom made to a particular application domain (e.g. RFID applications), DSLs
offer significant advantages in expressiveness and have an easier use when
compared with General Purpose Programming Languages (GPLs). Also, a larger
group of software developers can be reached with DSLs [76].

Some of the decisions that may lead to developing a DSL are the improved
software economics, and also the enabling of software development by users
with less expertise on the domain but with expertise in programming, or even by
end-users with knowledge in the domain, but no programming expertise.

An simple example of DSL is Excel’s macro language, which is a DSL for
spreadsheet applications adding programmability to Excel’s fundamental
interactive mode. Another well known DSL is TeX, which was developed for
expressing the structure of documents for typesetting purposes. Interestingly
enough TeX itself was implemented in another DSL called WEB, which was
developed exactly for this purpose. By appropriately establishing domain specific
notations, one can increase productivity of the target programmer audience.
When using GPLs, it is much harder to achieve the expressiveness of domain-
specific notations. Such concepts cannot be mapped in a straightforward manner
to functions or objects of libraries developed with General Purpose Programming
Language.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 10/102

The usage of DSLs brings the possibilities for analyzing, verifying, optimizing,
parallelizing and transforming DSL constructs that would be much harder or
unfeasible if using a GPL. This is mostly due to the fact that patterns of GPL
source code that are involved in such a process are either too complex or not
well defined.

The usage of a DSL-based front-end is a handy tool that may be used for dealing
with a system’s configuration and adaptation. However, DSLs are not necessarily
executable. They can be used only to represent a domain specific problem, but
usually they are run by execution engines.

2.2 Separation of Concerns

Observations on the source code of relatively complex applications [77] show
that the same unity of code focuses in different concerns (e.g.: concurrency,
security, accounting, distribution, transaction). The separation of concerns [78]
is a software engineering paradigm that has the objective of dissociating the
different concerns that compose a program. This dissociation makes the code
more readable and understandable by keeping these concerns separated from
the main application code. As a consequence, this separation of can describe the
different concerns of a program and their interrelations in a more abstract
manner. This approach allows the construction of applications that manage
theses different concerns without needing to change the application source code.

Some of the advantages of the separation of concerns are:
• A program describe in an abstract manner with different concerns
dissociated can have an easier implementation. This happens due to the fact that
each concern can be programmed independently. [79]
• Reading a program divided in different concerns is easier, because the
application code does not contain a mix of all concerns
• Specialists on each concern can work separately without interfering in
application code, without needing to know details of the program. If the coupling
between the concerns is weak, it becomes easier to be modified as well as
reusing each concern independently. In this case, the unity of reuse is no longer
the code, but the concern.

2.3 ASPIRE Programmable RFID solutions

Despite the simplicity of the operational principles of RFID technology (i.e. tags
responding to readers requests), the design of a complete RFID system
encompasses complex interactions not only between different layers of the OSI
(Open Systems Interconnection) model, but it also involves several market,
privacy, security, and business issues. This heterogeneous landscape calls for a
middleware platform which is able to consider all these complex variables in a
flexible and modular way, which is able to provide a starting point for future
upgrades and innovations, and which considerably reduces the implementation
costs of RFID solutions.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 11/102

APDL has been carefully designed to be simple, intuitive and comprehensive,
which facilitates its use by the majority of RFID developers, integrators and
consultants. APDL is not a general purpose specification; it is rather a specialized
specification, which captures the data and semantics of RFID processes.
Nevertheless, APDL adopts several concepts of the general-purpose XPDL [50]
(XML Process Definition Language) specification, especially in terms of modeling
composite multi-step inter-enterprise business processes. The (re)use of XPDL
constructs boosts the scalability, extensibility and technological longevity of the
APDL language. Furthermore, APDL is amenable by tools, in order to enable
stakeholders to use graphical modeling environment for designing and deploying
RFID solutions.

APDL has a clear orientation towards logistics solutions that comply with the EPC
global architecture. This is because it leverages several EPCglobal middleware
specifications, and combines them towards integrated RFID solutions. However,
it has also the flexibility to describe/represent smaller scale solutions that make
use of smaller subsets of EPCglobal middleware building blocks. Furthermore,
APDL can support non-EPC solutions based on appropriate customization of its
underlying middleware components. It is important that APDL based solutions
can be designed and deployed using visual tools for modeling, deployment and
configuration tasks. These tools are built taking into account the APDL
constructs, based on a Model Driven Architecture (MDA) paradigm. Hence, in
addition to the APDL capabilities, the deliverable presents tools and techniques
enabling RFID application development and deployment.

The programmability features in ASPIRE aim at easing the configuration of
ASPIRE solutions. The ASPIRE programmability functionality offers RFID
developers and consultants the possibility to deploy RFID solutions through
entering high-level meta-data for a company (including the business context of
its RFID deployments), rather than through writing significant amounts of low-
level programming statements.

Solutions are deployed simply through explicit representation of business
processes with their activities and their logical relations. The Business Process
Workflow Management Editor then configures the middleware to execute these
processes as specified in the process model.

Along with such ease of deployment the functionality also eliminates the
limitations of gathering requirements by IT which are overcome by allowing the
owners of the process to participate fully in the design, deployment and
management of these processes.

Visual representation as such would simply enable emergence of different views
from a common source allowing different participants from different areas of
specialty to have a common language.
Hereafter the document is structure as follows:

Section 3 explores various available models, workflows and modeling languages.
It first introduces the concept of business process management and the purpose

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 12/102

of the modeling approach. The section also investigates available business
process workflow concepts and languages.

Section 4 evaluates available OSS XPDL Editors. Specifically four well recognized
XPDL editors were investigated to determine their relevance in providing RFID
specific solutions. These evaluations together with the pros and cons of each are
presented in this section.

Section 5 details the RFID language specification requirements. It then compares
and evaluates the available process languages and the section ends with the
decision which and why would be the most suitable language for describing RFID
Business Processes.

Section 6 introduces the AspireRFID Process Description Language (APDL). It
describes the programmable Meta Language structure and outlines the process
description language specifications.

Section 7 presents the available tools that facilitates the APDL’s usability and
more specifically the Language’s Visual Editor and its “interpreter” to the ASPIRE
infrastructure.

Section 8 uses an example to describe how the APDL can be used to describe an
RFID workflow process.

This document concludes with a section that summarizes and outlines the main
findings of the deliverable. We expect the programmability and the introduction
of process modeling will significantly boost the adoption of RFID technology,
especially for SME communities that wish to use RFID as an innovation vehicle.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 13/102

Section 3 Available Models, Workflows and Languages Investigation

This section introduces the concept of business process management and the
purpose of using a modeling approach. It further explores the various available
models, workflows and modeling languages that could be used in order to
provide a comprehensive understanding of the subject.

3.1 General

3.1.1 Business Process Management

Today, markets have matured, globalisation and the wide spread internet has
given consumers the negotiating power. In such circumstances; to survive and
gain a competitive advantage companies are required to look for ways to
increase customer satisfaction, improve operations, reduce cost of doing
business, and establish new products and services at a low cost with supreme
agility. Companies realise that each product or service it produces is the outcome
of a number of activities performed [68] and therefore are on the watch for
methods, skills and tools that will enable them to create processes that would
yield customers to pay to see them do it again and again [66].

The RFID technology holds potential solutions to a wide range of management
problems from abilities to increase efficiency of inventorying goods transported in
and out of warehouses or distribution centres without unloading or digging
through pallets and packaging through to better product visibility hence
management of product availability on shelves to reducing problems of
shrinkage. While RFID would make products visibility possible, there exists a
need to create, implement and monitor these new processes in an efficient and
effective manner. A methodology alike RFID that helps make processes more
visible and explicit such that they could be manipulated to produce more efficient
and effective results. Business process management is just that, it is a new
approach to business process innovation and management [66].

“BPM defines, enables and manages the exchange of business information
on the basis of a process view that incorporates employees, customers,
partner, application and databases. From a business prospect, BPM
streamlines business processes both internal and external, eliminating
redundancies and increasing automation, enabling end to end visibility,
control and accountability of processes.” [68]

BPM is all about the efficient and effective management of business processes, it
does not look at machines and systems as the main part of the process at the
same time it does not ignore them. It recognises a process incorporates
employees, systems and automated machines [65]. It doesn’t view IT as being
the core of process change but doesn’t ignore it as TQM or Six Sigma does [65].
In fact Business Process management is a convergence of management theories
like TQM, Six Sigma, BPR with modern technologies like application development,
Service oriented architecture, workflows, etc into a unified whole [66].

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 14/102

In a way, BPM uses the good aspects of previous management theories such as
creativity and insight from Business Process Reengineering and ignores the
discontinuity or radicalisation of processes and process introduction. Therefore
BPM should not be looked at as just a digitizing system, or just as another
management theory, or as a one stop solution for all management problems.
Instead process management should be looked with the view of ‘not to automate
but obliterate’. This mantra has been followed for the past decade but it is only
now that methods and technology have become available to fully enable process
management in such manner [66]. Rarely would you find organisations today
explicitly trying to reengineer its processes. However, finding large corporations
who aren’t explicitly focussing on design and management of its processes is also
rare [67].

BPM is based on the theory that a product or service company provides is the
outcome of a number of activities performed [68]. Business processes make up
the organisation and execution of these activities and are a critical source to
improvement of the outcomes from these activities. Technology (information
technology and information systems) per se plays a vital part in the management
and execution of these processes, since more and more of the activities
performed by an organisation are supported by information systems. These
executions are either solely executed by the information systems (i.e.
automated) or performed with the input of employees. Therefore, for an
organisation to realise its business goals in an efficient and effective manner
require a successful amalgamation of the people and the information systems.
Business process and their management are important concepts that facilitate
this effective collaboration [68].

Business processes not only are the underpinning driver of an organisation but
also are essential towards design and realisation of technology. These
technologies such as RFID provide the ground works for rapid creation of new
functionalities that realise new products/services and for adapting new
functionalities that cater to new market requirements and gain competitive
advantage [68].Business Process Management incorporates concepts and
technologies from both fields; business administration and computer science to
provide a process centric approach towards improvement of business processes
i.e. organising companies on the basis of their business processes.

Business process in conceptual terms as defined by Davenport (1993) is “a set of
logically related tasks performed to achieve a defined business outcome for a
particular customer or market.” The term ‘logically related’ puts emphasis on
how tasks are performed as compared to what tasks are performed. In addition,
Davenport [64] also elaborates that a process is “a specific ordering of work
activities across time and space, with a beginning, an end and clearly defined
inputs and outputs.” The definition also recognizes that customers could be
internal or external therefore while processes are enacted by a single
organisation, they could interact with processes performed by other
organisations i.e. they occur across or between organisational subunits.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 15/102

Once business processes are formally established Business Process management
therefore is a set of concepts, methods, and techniques that support the design,
administration, configuration, enactment, and analysis of business processes
[68]. The underline methodology of BPM is the explicit representation of
business processes with their activities and their logical relations. Once
recognized, these processes can be analysed, improved and enacted. As
elaborated in later sections these business processes can be enacted in two
ways. First by encouraging employees to follow new procedures and policies
constructed. Alternatively, software systems can be used to coordinate the
enactment of these business processes. The ASPIRE RFID Middleware
Programmability incorporates these concepts and methodologies to do just that
by providing a programmable workspace which would allow for the design and
mechanised implementation of these processes.

This explicit process representation of business activities is formally known as
business process modelling. While there are several graphical notations for
business process modelling, their underlying methodology is quite similar. Figure
below shows a simplified version of one such modelling notation, the Business
Process Modelling Notation (BPMN).

Figure 1 Simple Ordering Process [68]

Figure 1 above shows a business process model of a resellers ordering process.
This model can be used as a blueprint to allow the company to organize its work.
The company can receive many orders each of which can be processed as
described in the blueprint. Each processed order is also called a business process
instance. i.e each model acts as a blueprint for a set of business process
instances. As mentioned earlier, business process models are the main artifacts
for implementing business processes. These could be done either through
procedures and policies or through the use of Business Process Management
System (BPMS). The BPMS executes these processes and ensures that all
business process instances are executed as specified in the process model.

Furthermore IT systems inability to address process improvements effectively to
some extent lies in its c
urrent techniques of capturing business requirements and translating them into
system behavior. Whereby each contributor involved whether that be a project
manager, an analyst or programmer brings a significantly different terminology
and frame of reference to bear on the problem.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 16/102

Business process modeling is a new approach to process design and
implementation that addresses these problems by allowing the development of a
single definition of business process from which different views of the process
can be depicted without causing the disarray of the process. The creation of a
unified process representation allows different people with different skills to view
and manipulate the process in their way and still build a coherent process. The
process view for a business analyst would mean a high level process map. While
to a programmer the process would look like a process language comparable to a
programmable language. Whereas, to an employee it would look like a process
map showing how processes interact. BPM enables this emergence of different
views from a common source allowing different participants from different areas
of speciality to have a common language.

The use of BPM gets the business people who are the owners of the processes
and the IT who devise applications to automate these processes under the same
process design environment using graphical notations. The limitations of
gathering requirements by IT are overcome by allowing the owners of the
process to participate fully in the design, deployment and management of these
processes.

Business process management does not require technology implicitly to bring
about an improvement in processes or per se require automation. However, BPM
is a methodology which uses process modeling to achieve process improvement
in a time effective manner. With RFID, the aim is to automate certain processes
and achieve a level of real time visibility hence making processes more efficient
and effective. In this regard the use of BPM to automate the processes using
ASPIRE RFID would yield towards more effective outcomes.

3.1.2 Workflow patterns

BPM is an amalgamation of various concepts and technologies. One such
technology is the Workflow management system. A Workflow management
system defines, creates, and manages the execution of workflows through the
use of software, running on one or more workflow engines [68]. Workflow
solutions introduced in the 90’s primarily consisted of an engine and a language.
Many solutions also included some type of graphical modeling environment,
albeit rudimentary. Only a handful included a more robust, UML-based modeler;
more likely it was a proprietary modeler [71].

A workflow is a model to represent real work for further assessment, e.g., for
describing a reliably repeatable sequence of operations. Likewise a workflow
pattern describes the behavior of business processes [69]. It “is the abstraction
from concrete form which keeps recurring in specific non arbitrary contexts"
[60].

The purpose of establishing workflow patterns was to identify the requirements
that a Workflow management system would have in order to model and execute
business processes. Patterns based approach was taken to describing these
requirements as it offered both a language independent and technology-

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 17/102

independent means of expressing their core characteristics in a form that was
sufficiently generic to allow for its application to a wide variety of offerings [61].
The patterns specified by Wil van der Aalst et al. [62] range from very simple to
very complex and cover the behaviors that can be captured within most business
process models [69].

Although initially focused on workflow systems, it soon became clear that the
patterns were applicable in a much broader sense and they started being used to
examine the capabilities of business process modeling languages such as BPMN,
UML Activity Diagrams and EPCs, web service composition languages such as
WCSI and business process execution languages such as BPML, XPDL and BPEL
[51]. In addition, these patterns have also directly influence the development of
BPMN and BPEL standards. Will van der and associates also claimed that most of
the proposed patterns can be easily mapped using existing languages or realized
through implementation. While, there are patterns that are supported only by a
small minority of the work flow management systems. In addition, no
contemporary workflow management system supports all patterns [61].

The application of a patterns-based approach to the identification of generic
workflow constructs was first proposed by Wil Van Der Aalst et. Al [62], which
identified a collection of patterns focused on one specific aspect of process-
oriented application development, namely the control flow perspective of the
workflows system. The original twenty-one control flow patterns were identified
through a comprehensive evaluation of workflow systems and process modeling
formalisms [61]. These patterns describing the control-flow perspective of
workflow systems are divided into the following categories:

 Basic Control flow Patterns
 Advance branching and synchronization patterns
 Structural Patterns
 Multiple Instances (MI)
 State based patterns
 Cancellation patterns

In Appendix III the patterns in each of the categories as specified by Wil Van Der
Aalst et al in the Journal Distributed and Parallel Databases, Volume 14, Issue 3,
pages 5-51, July 2003 are outlined. Upon their introduction in 2003 these
patterns have formed the basis of many other researches. The views of 2 such
researches; Weske [68] and Aalst [62] also incorporated in the following
sections.

The above workflow patterns have been used to examine the capabilities of
business process modeling languages such as BPMN, UML Activity Diagrams and
EPCs, web service composition languages such as WCSI and business process
execution languages such as BPML, XPDL and BPEL [61]. In addition, these
patterns have also directly influence the development of BPMN and BPEL
standards. The workflow patterns have also been used as initial requirements in
the design of a workflow language and open-source system called YAWL.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 18/102

White, S.A [69] reviewed how the two graphical process modeling notations, the
BPMN from the Business Process Management Initiative (BPMI), and the UML 2.0
Activity Diagram from the Object Management Group (OMG), can represent the
workflow patterns. The solutions of the two notations were compared for
technical ability to represent the patterns as well as their readability.

The examination revealed the core similarities and differences between the two
notations. First in an assessment of how the two could model the workflow
patterns resulted in both being able to adequately model most of the patterns.
Furthermore, the point that both notations provided similar solutions to most of
the patterns indicates the similarity in presentation between the notations. Minor
differences between the two also exist such as in modeling objects shapes and to
some extent in the terminology [69]. For instance, while an Activity Diagram has
a start node a Business Process Diagram has a Start Event.

Such high rates of similarities between the two diagrams are present because
both of them are designed to solve the same problem, modeling of business
processes. In contrast, the differences between the two also exist mainly
because both target different kind of users. While BPMN was created to provide
business people with an easy way of modeling and taking ownership of their
processes, the UML focused its efforts on standardizing the modeling for
programmes in software development. Although with UML 2.0 development
aimed at crafting a more user friendly activity diagram such that it could be used
by business people, it is still more technically oriented [69]. Some analysts do
see the two notations converge into one since there are huge similarities
between the two and both also share the characteristic of being a view (a
diagram) for the Business Process Definition metamodel [69].

3.2 Business Process Modeling

Business Process Modeling (BPM) is the representation of current ("as is") and
proposed ("to be") enterprise processes, so that they may be compared and
contrasted. By comparing and contrasting current and proposed enterprise
processes business analysts and managers can identify specific process
transformations that can result in quantifiable improvements to their businesses
[51]. Large applications must be more than just an aggregate of software
modules: these applications must be structured (architected) in a way that the
architecture enables scalability and reliable execution under normal or stressed
conditions. The structure of these applications must be defined clearly and
unambiguously so that:

 Maintenance staff can quickly locate and fix any bugs that may show up
long after the original programmers have moved on;

 Developers can add new features that may be required over time by the
business users.

Another benefit of an architected structure is that it enables code reuse: design
time is the best time to seek to structure an application as a collection of self-
contained modules or components. In this context, modeling is the process of
architecting and structurally designing a software application before starting the

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 19/102

coding phase. Modeling is a critical effort for large software projects, and it is
also useful for medium projects. Using a model, developers can assure
themselves that business functionality is complete and correct, that end-user
needs are met, and that program design supports requirements for scalability,
robustness, security, extendibility, and other characteristics, before
implementation in code makes changes difficult and expensive to make [52].

3.2.1 Available Business Processes Workflow Definition Concepts

3.2.1.1 Business Process Definition Metamodel

The Business Process Definition Metamodel (BPDM) is a standard definition of
concepts used to express business process models (a metamodel), adopted by
the OMG (Object Management Group). Metamodels define concepts,
relationships, and semantics for exchange of user models between different
modeling tools. The exchange format is defined by XSD (XML Schema) and XMI
(XML for Metadata Interchange), a specification for transformation of OMG
metamodels to XML. BPDM provides abstract concepts as the basis for consistent
interpretation of specialized concepts used by business process modelers. For
example, the ordering of many of the graphical elements in a BPMN (Business
Process Modeling Notation) diagram is depicted by arrows between those
elements, but the specific elements can have a variety of characteristics. For
example, all BPMN events have some common characteristics, and a variety of
specific events are designated by the type of circle and the icon in the circle. The
abstract BPDM concepts ensure implementers of different modeling tools will
associate the same characteristics and semantics with the modeling elements to
ensure models are interpreted the same way when moved to a different tool.
Users of the modeling tools do not need to be concerned with the abstractions,
they only see the specialized elements [53]. BPDM extends business process
modeling beyond the elements defined by BPMN and BPEL (Business Process
Execution Language) to include interactions between otherwise-independent
business processes executing in different business units or enterprises
(choreography). Choreography can be specified independently of its participants,
and used as a requirement for the specification of the orchestration implemented
by a participant. BPDM provides for the binding of orchestration to choreography
to ensure compatibility. Many current business process models focus on
specification of executable business processes that execute within an enterprise
(orchestration).

3.2.1.2 Business Process Modeling Notation

The Business Process Modeling Notation (BPMN) is a standard modeling notation
that provides a graphical notation for expressing business processes in a
Business Process Diagram (BPD) in a way that is readily understandable by
business users; from the business analysts who create the initial drafts of the
processes, to the technical developers responsible for implementing the
technology that will perform those processes, and finally, to the business people
who will manage and monitor the processes. The BPMN specification also
provides a binding between the notation’s graphical elements and the constructs

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 20/102

of block-structured process execution languages, including Business Process
Modeling Language (BPML) and Business Process Execution Language for Web
Services (BPEL-WS) [52].

3.2.1.2.1 BPMN overview

BPMN provides businesses with the capability of understanding their internal
business procedures in a graphical notation and will give organizations the ability
to communicate these procedures in a standardized manner. Currently, there are
many process modeling tools and methodologies. Given that individuals may
move from one company to another and that companies may merge and diverge,
it is likely that business analysts are required to understand multiple
representations of business processes—potentially different representations of
the same process as it moves through its life cycle of development,
implementation, execution, monitoring, and analysis. Therefore, a standard
graphical notation facilitates the understanding of the performance collaborations
and business transactions within and between the organizations. This ensures
that businesses understand their own environments and the environment of
participants in their business, and will enable organizations to adjust to new
internal and B2B business circumstances quickly. To do this, BPMN follows the
tradition of flowcharting notations for readability but at the same time provides
mapping to the executable constructs [52].

3.2.1.2.2 BPMN uses

Business process modeling is used to communicate a wide variety of information
to a wide variety of audiences. It is designed to cover this wide range of usage
and allows modeling of end-to-end business processes to allow the viewer of the
diagram to be able to easily differentiate between sections of a BPMN diagram.
There are three basic types of sub-models within an end-to-end BPMN model:

 Private (internal) business processes
 Abstract (public) processes
 Collaboration (global) processes

Private business processes are those that are internal to a specific organization
and are the types of processes that have been generally called “workflow” or
“BPM processes”. A single private business process will map to a single BPEL-WS
document. If swimlanes are used, then a private business process will be
contained within a single Pool. The Sequence Flow of the Process is therefore
contained within the Pool and cannot cross its boundaries. Message Flow can
cross the Pool boundary to show the interactions that exist among separate
private business processes. Thus, a single BPMN diagram may show multiple
private business processes, each mapping to a separate BPEL-WS process.

Abstract processes represent the interactions between a private business process
and another process or participant. Only those activities that are used to
communicate outside the private business process are included in the abstract
process. All other “internal” activities of the private business process are not
shown in the abstract process. Thus, the abstract process shows to the outside

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 21/102

world the sequence of messages that is required to interact with that business
process. Abstract processes are contained within a Pool and can be modelled
separately or within a larger BPMN diagram to show the Message Flow between
the abstract process activities and other entities. If the abstract process is in the
same diagram as its corresponding private business process, then the activities
that are common to both processes can be associated.

A collaboration process depicts the interactions among two or more business
entities. These interactions are defined as a sequence of activities that
represents the message exchange patterns among the entities involved. A single
collaboration process may be mapped to various collaboration languages, such as
ebXML BPSS, RosettaNet, or the resultant specification from the W3C
Choreography Working Group. Collaboration processes may be contained within
a Pool, and the different participant business interactions are shown as Lanes
within the Pool. In this situation, each Lane would represent two participants and
a direction of travel between them. They may also be shown as two or more
Abstract Processes interacting through Message Flow. These processes can be
modelled separately or within a larger BPMN diagram to show the Associations
between the collaboration process activities and other entities. If the
collaboration process is in the same diagram as one of its corresponding private
business processes, then the activities common to both processes can be
associated.

3.2.1.2.3 Types of BPMN Diagram

Within and between these three BPMN sub-models, many types of diagrams can
be created. The following are the types of business processes that can be
modeled with BPMN (those with asterisks may not map to an executable
language):

 High-level private process activities (not functional breakdown)
 Detailed private business process

o As-is, or old, business process
o To-be, or new, business process

 Detailed private business process with interactions among one or more
external entities (or “black box” processes)

 Two or more detailed private business processes interacting
 Detailed private business process relationship with Abstract Process
 Detailed private business process relationship with Collaboration Process
 Two or more Abstract Processes
 Abstract Process relationship with Collaboration Process
 Collaboration Process only (e.g., ebXML BPSS, or RosettaNet)
 Two or more detailed private business processes interacting through their

Abstract Processes
 Two or more detailed private business processes interacting through a

Collaboration Process
o Two or more detailed private business processes interacting through

their Abstract Processes and a Collaboration Process

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 22/102

BPMN is designed to allow all the foregoing types of diagrams. However, it should
be cautioned that if too many types of sub-models are combined, such as three
or more private processes with message flow between each of them, then the
diagram may become too hard for someone to understand. Thus, we recommend
that the modeler pick a focused purpose for the BPD, such as a private process,
or a collaboration process.

3.2.1.2.4 Business Process Diagrams

This section provides a summary of the BPMN graphical objects and their
interrelationships. One of the goals of BPMN is that the notation be simple and
adoptable by business analysts. Also, there is a potentially conflicting
requirement that BPMN provide the power to depict complex business processes
and map to BPM execution languages. To help understand how BPMN can
manage both requirements, the list of BPMN graphic elements is presented in
two groups. First, there are the core elements that support the requirement of a
simple notation. These are the elements that define the basic look and feel of
BPMN. Most business processes can be modelled adequately with these
elements. Second, all the elements, including the core elements, help support
the requirement of a powerful notation to handle more advanced modeling
situations. Further, the graphical elements of the notation are supported by non-
graphical attributes that provide the remaining information necessary to map to
an execution language or for other business modeling purposes [52].

It should be emphasized that one of the drivers for the development of BPMN is
to create a simple mechanism for creating business process models. Of the core
element set, there are three primary modeling elements (flow objects):

 Events
 Activities
 Gateways

There are three ways of connecting the primary modeling elements:
 Sequence Flow
 Message Flow
 Association

There are two ways of grouping the primary modeling elements through
Swimlanes:

 Pools
 Lanes

Table 1 below displays a list of the core modeling elements that are depicted by
the notation.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 23/102

Table 1 Business Process Diagram Primary Elements

3.2.2 Activity Diagram (UML) another modeling tool such as BPMN

Activity diagrams are a loosely defined diagram technique for showing workflows
of stepwise activities and actions, with support for choice, iteration and
concurrency. UML 2 activity diagrams are typically used for business process
modeling, for modeling the logic captured by a single use case or usage scenario,

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 24/102

or for modeling the detailed logic of a business rule. Although UML activity
diagrams could potentially model the internal logic of a complex operation it
would be far better to simply rewrite the operation so that it is simple enough
that you don’t require an activity diagram. In many ways UML activity diagrams
are the object-oriented equivalent of flow charts and data flow diagrams (DFDs)
from structured development [54]. An example of UML activity diagram is shown
in the Figure 2 below.

Figure 2 Business Process modeled with an activity diagram [55]

3.2.3 Programming languages for BPM

3.2.3.1 Business Process Modeling Language

The Business Process Modeling Language (BPML) is one example of an effort at
BPM standardization. BPML is a metalanguage for the modeling of business
processes. It provides an abstracted execution model for collaborative and
transactional business processes based on the concept of a transactional finite-
state machine [BPM200501]. The language provides a model for expressing
business processes and supporting entities. BPML defines a formal model for
expressing abstract and executable processes that address all aspects of
enterprise business processes, including activities of varying complexity,
transactions and their compensation, data management, concurrency, exception
handling, and operational semantics. BPML also provides a grammar in the form
of an eXtensible Markup Language (XML) Schema for enabling the persistence
and interchange of definitions across heterogeneous systems and modeling tools.
BPML itself does not define any application semantics such as particular
processes or application of processes in a specific domain; rather, BPML defines
an abstract model and grammar for expressing generic processes. This allows
BPML to be used for a variety of purposes that include, but are not limited to, the
definition of enterprise business processes, the definition of complex Web
Services (WS), and, the definition of multiparty collaborations.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 25/102

3.2.3.2 Business Process Execution Language

Business Process Execution Language (BPEL), short for Business Process
Execution Language for Web Services (BPEL-WS) is an OASIS standard
executable language for specifying interactions with Web Services. Processes in
Business Process Execution Language export and import information by using
Web Service interfaces exclusively. BPEL-WS provides a language for the
specification of Executable and Abstract business processes. By doing so, it
extends the Web Services interaction model and enables it to support business
transactions. WS-BPEL defines an interoperable integration model that should
facilitate the expansion of automated process integration both within and
between businesses.

BPEL is an Orchestration language, not a choreography language. The primary
difference between orchestration and choreography is executability and control.
An orchestration specifies an executable process that involves message
exchanges with other systems, such that the message exchange sequences are
controlled by the orchestration designer. A choreography specifies a protocol for
peer-to-peer interactions, defining, e.g., the legal sequences of messages
exchanged with the purpose of guaranteeing interoperability. Such a protocol is
not directly executable, as it allows many different realizations (processes that
comply with it). A choreography can be realized by writing an orchestration (e.g.
in the form of a BPEL process) for each peer involved in it. The orchestration and
the choreography distinctions are based on analogies: orchestration refers to the
central control (by the conductor) of the behavior of a distributed system (the
orchestra consisting of many players), while choreography refers to a distributed
system (the dancing team), which operate according to rules but without
centralized control [46]. BPEL's focus on modern business processes, plus the
histories of WSFL and XLANG, led BPEL to adopt web services as its external
communication mechanism. Thus BPEL's messaging facilities depend on the use
of the Web Services Description Language 1.1 (WSDL) to describe outgoing and
incoming messages.
In addition to providing facilities to enable sending and receiving messages, the
BPEL programming language also supports:

 A property-based message correlation mechanism XML and WSDL typed
variables

 An extensible language plug-in model to allow writing expressions and
queries in multiple languages: BPEL supports XPath 1.0 by default

 Structured-programming constructs including if-then-elseif-else, while,
sequence (to enable executing commands in order) and flow (to enable
executing commands in parallel)

 A scoping system to allow the encapsulation of logic with local variables,
fault-handlers, compensation-handlers and event-handlers

 Serialized scopes to control concurrent access to variables

3.2.3.3 XML Process Definition Language (XPDL)

XPDL is the Serialization Format for BPMN. XPDL provides a file format that
supports every aspect of the BPMN process definition notation including graphical

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 26/102

descriptions of the diagram, as well as executable properties used at run time.
With XPDL, a product can write out a process definition with full fidelity, and
another product can read it in and reproduce the same diagram that was sent.
XPDL Enables a Process Definition Ecosystem. XPDL is extensible so that it allows
each different tool to store implementation specific information within the XPDL,
and have those values preserved even when manipulated by tools that do not
understand those extensions. This is the only way to provide for a "round trip"
through multiple tool and still be able to return to the original tool with complete
fidelity [57].

XPDL uses an XML-based syntax, specified by an XML schema. The main
elements of the language are: Package, Application, Workflow-Process, Activity,
Transition, Participant, DataField, and DataType. The Package element is the
container holding the other elements. The Application element is used to specify
the applications/tools invoked by the workflow processes defined in a package.
The element WorkflowProcess is used to define workflow processes or parts of
workflow processes. A Patterns and XPDL 4 WorkflowProcess is composed of
elements of type Activity and Transition. The Activity element is the basic
building block of a workflow process definition. Elements of type Activity are
connected through elements of type Transition. There are three types of
activities: Route, Implementation, and BlockActivity. Activities of type Route are
dummy activities just used for routing purposes. Activities of type BlockActivity
are used to execute sets of smaller activities. Element ActivitySet refers to a self
contained set of activities and transitions. A BlockActivity executes such an
ActivitySet. Activities of type Implementation are steps in the process which are
implemented by manual procedures (No), implemented by one of more
applications (Tool), or implemented by another workflow process (Subflow). The
Participant element is used to specify the participants in the workflow, i.e., the
entities that can execute work. There are 6 types of participants: ResourceSet,
Resource, Role, OrganizationalUnit, Human, and System. Elements of type
DataField and DataType are used to specify workflow relevant data. Data is used
to make decisions or to refer to data outside of the workflow, and is passed
between activities and subflows [58].

3.2.3.4 Yet Another Workflow Language (YAWL)

Yet Another Workflow Language (YAWL) is a workflow language based on the
Workflow patterns. The language is supported by a software system that includes
an execution engine, a graphical editor and a worklist handler. The system is
available as an Open source software under the LGPL license. The original drivers
behind YAWL were to define a workflow language that would support all (or
most) of the Workflow Patterns and that would have a formal semantics.
Observing that Petri nets came close to supporting most of the Workflow
Patterns, the designers of YAWL decided to take Petri nets as a starting point and
to extend this formalism with three main constructs, namely or-join, cancellation
sets, and multi-instance activities. These three concepts are aimed at supporting
five of the Workflow Patterns that were not directly supported in Petri nets,
namely synchronizing merge, discriminator, N-out-of-M join, multiple instance
with no a priori runtime knowledge and cancel case. In addition, YAWL adds

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 27/102

some syntactical elements to Petri nets in order to intuitively capture other
workflow patterns such as simple choice (xor-split), simple merge (xor-join), and
multiple choice (or-split). During the design of the language, it turned out that
some of the extensions that were added to Petri nets were difficult or even
impossible to re-encode back into plain Petri nets. As a result, the original formal
semantics of YAWL is defined as a Labelled transition system and not in terms of
Petri nets. The fact that YAWL is based on a formal semantics has enabled the
implementation of several techniques for analyzing YAWL processes [59].
Yawl provides comprehensive support for control-flow patterns and can thus be
considered a highly expressive language. The graphical manifestations of the
various concepts for control-flow specification in Yawl are shown in Figure 3. Yawl
extends Workflow nets with concepts for the OR-split and the OR-join, for
cancellation regions, and for multiple instance tasks. In Yawl terminology
transitions are referred to as tasks and places as conditions. As a notational
abbreviation, when tasks are in a sequence they can be connected directly
(without adding a connecting place). The expressiveness of Yawl allows for
models that are relatively compact as no elaborate work-arounds for certain
patterns are needed. Therefore the essence of a model is relatively clear and this
facilitates subsequent adaptation should that be required. Moreover, by providing
comprehensive pattern support Yawl provides flexibility by design and tries to
prevent the need for change, deviation, or underspecification [60].

Figure 3 YAWL control-flow concepts

3.2.3.5 Abstract Process Execution Language (APEL) UJF

The APEL (for Abstract Process Engine Language) [62] is an activity-based
process modeling language proposed by the Adele Team at UJF. It has a high
level formalism for modeling processes and a flexible execution system
supporting the dynamic evolution of processes (models or instances).

The formalism contained in APEL has the following concepts: Activity, Product,
Port, Resource and Dataflow. An activity is a step in the workflow during which
an action is performed. Products are objects (e.g., documents, data) produced,
transformed or consumed by activities. Ports are the activity interfaces and they
define and control the products that are expected and/or produced by activities.
Ports are the only externally visible part of an activity (the encapsulation
principle). Input ports perform an AND over their incoming data flows. That
means that the port fires when at least one exemplar of each expected product is
available in the port. Firing means that products are removed from the port and

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 28/102

the activity is started with that product set as input. When an output port is full it
fires (either automatically or manually), which means products are sent to all
destination ports. Dataflows describe how products are exchanged among
activities. Resources are responsible for activities execution. The APEL
metamodel is presented in Figure 4 [63].

Figure 4 APEL Metamodel [63]

An illustrative example using APEL is presented in Figure 5, giving a reseller
process example. The process starts with the Receiver Order activity in which a
customer orders a product, followed by two activities executed in parallel. In the
first one, the products are shipped using the Ship Products activity; in the other
one, an invoice is sent to customer with the Send Invoice activity, and a
payment is awaited in Receive Payment activity.

Figure 5 An APEL Control model [63]

Finally the Archive Order activity archives ordering process documents and the
process finishes. The real nature of the activities is not defined in the model, and
they can be manual, automatic, or a combination of both. The nature, format
and content of the data circulating between activities are not defined either, due
to the fact that APEL products are placeholders for information circulating in the
process. An APEL product can be physical, an electronic document (e.g., a file, a
Software configuration), or structured data of any kind (e.g., a data base record,
a Java object, an XML document).

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 29/102

Section 4 Available OSS XPDL Editors Investigation

XPDL (XML Process Definition Language) is a standardized XML based formalism
that allows the exchange of business process definitions among different
modeling tools. XPDL encodes both the syntactic as well as the semantic parts of
a business process model, i.e., it can capture both the graphical presentation of
the model (including placement coordinates of its constituent components) and
the execution semantics for how the components (processes) interact. So XPDL
by being in XML format and be able to carry graphical representation data makes
it the most suitable candidate for describing RFID Business Processes for the
AspireRFID middleware. In this section we are going to investigate some
candidate OSS XPDL editors that probably one of them could be used after
extending and refactoring (to support RFID business processes) to make it part
of the AspireRFID BPWME (Business Process Workflow Management Editor).

4.1 Enhydra JaWE

Enhydra JavaWE is an open source Java Workflow Process Editor that implements
the WfMC specifications and uses XPDL for process representation. It allows
viewing and editing of XPDL files that conform to the WfMC specifications, while
it also supports their validation. Figure 6 is a snapshot from the Enhydra JaWS
screen (www.enhydra.org).

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 30/102

Figure 6 : Snapshot of Enhydra JaWE screen.

The general use of JaWE is shown in Figure 7. The tool allows the definition of a
workflow process, which can then exported to a XPDL file. Alternatively XPDL
files can be imported by the tool. The XPDL process definition can then be
interpreted by a workflow engine.

Figure 7 Use of JaWE

4.1.1 Pros

Advantages of JaWE include:

 It provides full XPDL 1.0 support
 Real time XPDL creation
 It is already a product, which can be downloaded for free (distributed

under LGPL)

4.1.2 Cons

JaWE supports the XPDL specification, which is rather generic and complicated.
Hence, on the negative side JaWE becomes a rather complicated tool to use. For

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 31/102

the purposes of the project a more compact and lightweight formalism would be
appropriate.

4.2 Nova Bonita

Bonita consists of an open source BPM solution, now maintained and supported
by BonitaSoft, with different components: Bonita Designer, Bonita Runtime and
Bonita Console (Figure 8). These components can either be distributed as
separate applications or as an integrated graphical environment for the
development and execution of BPM based applications.

Figure 8 Screenshot of Bonita’s Web Console

4.2.1 Pros

 BPM Designer available as an Eclipse plug-in
 BPM Designer also available as a standalone desktop application
 Nova Bonita has its own execution engine (runtime)
 Execution runtime available is Open source
 Integration of execution engine with its Eclipse plugin
 A web console (Bonita console) for managing the execution engine
 LGPL License

4.2.2 Cons

 No full XPDL 1.0 support (does not support composite data types)
 Designer uses of Java Swing instead of Eclipse’s SWT

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 32/102

4.3 Eclipse Java Workflow Tooling

JWT is a set of tools for developing, deploying and testing workflows. JWT
provides an adaptable framework for different graphical representations and XML
notations, as well as different workflow engines. JWT is actually an ongoing
project that aims to provide generic tools for workflow engines both for build-
time and runtime. In addition to the graphical editor, a snapshot of which is
shown in Figure 9, JWT designs a set of generic APIs for allowing definition and
administration of business processes.

Figure 9 Screenshot of Eclipse JWT

4.3.1 Pros

 Java JWT is easy to use and allows graphical creation of business
processes

 New elements creation support (without the need of programming)
 It supports the whole business process lifecycle (design, development,

runtime, monitoring)
 It is an open and extensible framework
 The components of JWT can be used on their own or combined with an

existing tooling
 Multiple views allow for business and technical specific representations of

the modeled process as well as supporting different standards (e.g. UML
Activity Diagram, EPC, ...)

 Transformations allow to import and export workflows in many different
representations (e.g. XPDL, BPMN, BPEL, STP-IM, ...)

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 33/102

 It is an Eclipse plug-in

4.3.2 Cons

On the negative side:

 JWT is an ongoing project currently in its incubation phase
 It does not provide full XPDL 1.0 support
 No real time XPDL creation is supported
 JWT lacks the ability to convert from XPDL to JWT workflow

4.4 YAPROC

YAPROC (Yet Another Process) is an Eclipse platform plug-in (seen in Figure 10)
which provides all the ability of developing standard workflow processes based
on XPDL. YAPROC is built on top of Enhydra Shark and provides features such as
reporting, runtime process viewer and activity management.

Figure 10 Screenshot of YAPROC

4.4.1 Pros

 Uses Enhydra JaWE for the workflow editor (with its pros and cons)
 XPDL 1.0 compatible
 Provides Managing i/f
 Eclipse plug-in
 LGPL V3.0 license

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 34/102

4.4.2 Cons

 Too bound with the Enhydra shark
 The cons of the Enhydra JaWE applies here also.

4.5 FOCAS

The ADELE team at the UJF develops a process and workflow engine called
FOCAS (Framework for Orchestration, Aggregation and Composition of Services).
Although not an XPDL editor, its concepts are shown here for comparative
purposes. In FOCAS, Service compositions are described using a process to
express control and data flow between services (i.e. service orchestration).
FOCAS works as plug-in integrated to the Eclipse IDE (Figure 11) and constructed
on top of CADSE (Computer Aided Domain Specific Engineering environments),
which is an "intelligent" high level Eclipse workspace aware of the domain
concepts, and knows the "best" way to map these concepts toward programming
artifacts (e.g. files, folders, projects).

Figure 11 Screenshot of a process being edited in FOCAS

4.5.1 Pros

 Processes are designed using a high abstraction level language APEL.
 Non-functional properties can be added extending the basic environment,

using annotation techniques

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 35/102

 Service platform independent
 Process patterns can be saved from a process model and used in several

process definitions.
 New functional domains can be added to create richer process-based

applications
 Processes can be enriched with behaviour to adapt them to specific

domains
 Extensible for Non-functional properties (security, distribution already

available)

4.5.2 Cons

 Not based on XPDL
 No administration interface
 Need of implementing mappings between abstract APEL processes and

concrete services

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 36/102

Section 5 Selecting the most Suitable for an RFID Language Specification

5.1 RFID Language Specification Requirements

The RFID Domain Specific language specifications requirements should follow the
guidelines listed below:

 It should be as simple as possible,
 Be Domain-Oriented,
 Should be able to support RFID processes and Data,
 Be capable to describe a Composite/Elementary RFID Process as shown in

at the example depicted in Figure 12 below,
 Be capable of carrying graphical representation data (e.g., XPDL),
 Be able to be mapped to XML for the AspireRFID programmable engine,
 Be XML Based,
 Amenable by Tools,
 Would be based on early experience with the AspireRFID tools /

configurators / IDE,
 The Goal would be to become an Open Specification for RFID Solutions
 Should be standard and extensible,
 To allow stakeholders to build RFID solutions

Figure 12 Composite/Elementary Business Process relationship/hierarchy

The Programmable Meta-Language as shown in Figure 13 below should also be a
combination of the following Specifications:

 Physical reader Specs
 Logical Readers Specs
 ECSpecs
 Master Data Document
 Middleware Management/Configuration Data (BEG, Connector)
 Business Workflow data

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 37/102

Figure 13 Programmable Meta-Language Data Support requirements.

All the above should be augmented with design data (e.g. XPDL) for the
visualization of the RFID solution to the BPWME (Business Process Workflow
Management Editor) tool.

5.2 Comparison of available Process Languages

In this section we are going to compare some of the available Business Process
Languages so as to help us with the selection of the most suitable candidate for
the AspireRFID middleware.

How Does XPDL Compare to BPEL?
BPEL and XPDL are entirely different yet complimentary standards. BPEL is an
"execution language" designed to provide a definition of web services
orchestration. It defines only the executable aspects of a process, when that
process is dealing exclusively with web services and XML data. BPEL does not
define the graphical diagram, human oriented processes, subprocess, and many
other aspects of a modern business process: it simply was never defined to carry
the business process diagram from design tool to design tool [57].

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 38/102

How Does YAWL Compare to BPEL?
YAWL is sometimes seen as an alternative to BPEL. A major advantage of BPEL is
that it is driven by a standardization committee supported by several IT industry
players. As a result, BPEL is supported by a significant number of tools (both
proprietary and open-source) while YAWL has a single implementation at
present. Also, several researchers have captured the formal semantics of subsets
of BPEL in terms of various formalisms, including Petri nets, Process algebra and
Finite state machine. This has paved the way for the development of static
analysis tools for BPEL that can compete with the static analysis capabilities
provided by the YAWL system. On the other hand, it has been noted that
standard BPEL fails to support human tasks, that is, tasks that are allocated to
human actors and that require these actors to complete actions, possibly
involving a physical performance. A number of BPEL engines already provide
extensions to BPEL for human tasks, but these extensions are yet to be
standardized. In contrast, YAWL provides a unified interface for worklist services
based on Web services standards. This interface allows developers to build their
own worklist service to support human tasks according to their needs. In
addition, the YAWL system comes with a default worklist service that supports
several types of human task allocation and handling. Another advantage of YAWL
is its support for the Workflow Patterns, although the gap between YAWL and
BPEL in this respect may be reduced by new constructs that are included in BPEL
version 2.0

How Does APEL Compare to XPDL?
APEL is a language used to express a process from an abstract view using a
graphical formalism. However, in order to execute one specification in APEL, the
language must be extended to add other important aspects of a process
definition such as data and resources (humans and applications). Only one
implementation of the editor and execution engine is available, and they are not
available as open source. In the other hand, XDPL proposes a language much
richer, with concepts supporting all aspects of a business process, concerns as
subprocesses, data, applications, and humans resources are treated by XPDL.
There are several implementations of editors and engines supporting XPDL, most
of them are open source software. Moreover, XPDL is a standard defined by the
WfMC while APEL is an individual initiative.

5.3 Decision

The workflow supporting languages that were presented in the previous sections
are rather general purpose as they have been designed to model a variety of
workflow environments capturing thus most of the well known business
processes. They have not tuned to a specific domain and as such it is hard to
express concepts of a specialized domain. The same statement holds for the case
of the ASPIRE RFID specific domain. Specialized concepts like RFID-based
processes and RFID related data are rather cumbersome to express in general
purpose workflow modeling languages.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 39/102

From all the previously described languages, XPDL would probably be the most
appropriate candidate to use taking in considerations the RFID language
requirements described above. But following the same requirements due to the
generality and complexity of XPDL for describing an RFID Open Loop Business
Process we are forced to create a hybrid that would be simpler to understand, to
describe its structure and specialized on RFID Business Processes. Furthermore
there is not an Open Source XPDL Editor available to meet our needs for
describing an RFID Business Process and the effort required for refactoring one
of the editors described above to support such functionalities would be too much.

Therefore the need for a new special purpose modeling language that will be able
to represent in a clean way RFID related concepts and a workflow editor that
would accompany it becomes evident. The approach that was followed in the
project was to design such a Domain Specific Language that would use some of
the XPDL’s notions, named APDL (ApireRFID Process Description Language),
which is presented in the next section.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 40/102

Section 6 AspireRFID Process Description Language (APDL)

APDL [83] is oriented towards solutions that comply with the EPCglobal
Architecture. According to this architecture [10] the modules that compose an
end-to-end RFID solution can be logically considered to be layered as depicted in
Figure 14. The typical information flow through these layers involves:

 Collecting RFID data from the physical readers, through reading the
tagged items. At this level middleware implementations insulate higher
layers from knowing what readers have been chosen. Moreover, they
achieve virtualization of tags, which allows RFID applications to support
different tag formats.

 Filtering the RFID sensor streams according to application needs, and
accordingly emitting application level events. At this level middleware
implementations insulate the higher layers from the physical design
choices on how tags are sensed and accumulated, and how the time
boundaries of events are triggered.

 Mapping the filtered readings to business semantics as required by the
target applications and business processes. At this level middleware
implementations insulate enterprise applications from understanding the
details of how individual steps in a business process are carried out.

Figure 14 Middle Middleware configuration using APDL [10]

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 41/102

Hence, according to the EPCglobal architecture, a middleware solution requires
the combination and orchestration of various specifications towards:

 Defining the event cycle specifications (ECSpecs) [1],
 Defining the Logical Reader specifications (LRSpecs) [1],
 And, finally, providing the EPCIS with the required Master Data (EPCIS

Master Data Document) that partially manages how Application Level
Events (ALE) will be stored in the EPCIS repository [9].

6.1 The Required Components/Layers

The APDL challenge is to create a single specification which will be able to
describe a complete RFID Business Process in a coherent way that combines all
the above specifications, while also accounting for Middleware configuration data
(e.g. modules connection endpoints), and Workflow information. Each of the
above-mentioned specifications is associated with a number of RFID middleware
modules and data elements, which collectively comprise an RFID solution. In
particular, at the F&C (Filtering and Collection) module one must configure the
ECSpec, which is a complex type that describes an Event Cycle [1] and one or
more reports to be produced from it. An ECSpec also includes the Logical Reader
list which is going to be used for the denoted Event Cycle. The LRSpecs
specification is accordingly used to describe Logical Readers configurations.

At the EPCIS (EPC Information Sharing) layer Master Data Vocabularies are
defined. The Master Data Vocabularies contain additional data that provides the
necessary context for interpreting Event Data [9]. The most important Master
Data vocabulary type for describing an RFID Business process is the
BusinessTransactionTypeID which is capable of enclosing all the required
information for identifying a particular business transaction.

In order to integrate the Information Sharing layer with the F&C layer (Figure 14),
we introduce a capturing application called Business Event Generator (BEG). BEG
lies between the F&C and Information Service (e.g., EPC-IS) modules. The role
of the BEG is to automate the mapping between reports stemming from F&C and
IS events. The Business event generation module associates Master Data, stored
at the EPCIS repository, with RFID tag data which are produced in the form of
Event Cycle Reports (ECReports [1]) from the Filtering and collection module.
Sources of data include filtered, collected EPC tag data obtained from various
RFID physical sources. The RFID data are captured from BEG module and
eventually are stored at the Information Service repository in the form of RFID
Events (Object, Quantity, Aggregation, and Transaction Events) as defined in the
EPC-IS specification [9].

The BEG module recognizes the occurrence of EPC-related business events, and
delivers these as EPCIS data. BEG facilitates the abovementioned middleware
modules and data elements to generate and store to the EPCIS repository
context aware RFID Event Data. Low level business processes creation
requirements are defined, as shown in Figure 15 and Figure 12, to give the ability
to combine them together, in order to describe a complete business transaction
(e.g. Receiving, Shipping, Pick & Pack, etc). These Low Level business processes

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 42/102

that also contain all the above described specifications are characterized as
Elementary Business Process (EBProc).

6.2 Defining APDL’s Business Process

Figure 15 depicts an example of the concept of decomposing a business process
into a number of RFID business events. We can see that a “Moving” Business
Process could be analyzed in a number of RFID events that we call Elementary
Business Processes.

Figure 15 Decomposing an Inter-enterprise Business process

Figure 12 illustrates an example of a supply chain of consumer items (in this case
bottles) all the way from the moment they are shipped from the factory, going
through the warehouse premises, up to the shopping centre. We call this entire
process Open Loop Composite Business Process (OLCBProc). Open-Loop in the
context of APDL stands for business processes that are executed throughout the
lifecycle of a supply chain. For instance, an Open Loop procedure refers to a
supply chain whose objects of interest move from any location in the factory till a
retail store shelf regardless to whether these business locations belong to the
same company or no. An OLCBProc can be broken into many Close Loop
Composite Business Processes (CLCBProc). A CLCBProc is related with the
Business Location that a group of transactions takes place and the company that
“owns” these transactions. So at Figure 12 example at the Factory’s Business
location we define one CLCBProc which contains all the company’s transaction for
the specific physical location. A CLCBProc can further be divided into the finest
business entity we define called Elementary Business Processes (EBProc). In the
example in Figure 12, at the Factory’s CLCBProc we define three EBProc’s which
are Commission of Bottles, Pack Bottles into Case and Shipment of the Case that
can be described from an Object Event, an Aggregation Event, and an Object
Event respectively. We define an Aggregation Event at packing the bottles
because we need to bind the IDs of the bottles, which are the transacted items,

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 43/102

with the ID of every case, which is the parent object. A similar decomposition
and description of Business Processes from RFID Events is done at the CLCBProc
of the Warehouse and the Shopping centre.

6.3 Generating Business Logic

Summing up, fixed lists of identifiers with standardized meanings for concepts
like business step and disposition along with user-created identifiers like read
point, business location, business transaction and business transaction type at
the EPCIS layer and ECSpecs at the ALE layer must be defined and combined
with rules applied by the BEG layer so as RFID Events production can be
successfully achieved. All these information elements will be stored and managed
as pieces of Master Data within an appropriate database schema.

To create Event Data, some event fields are required and some are optional.
Table 1 maps these associations.

R = Required
O = Optional

ObjectEvent AggregationEvent QuantityEvent
Transaction

Event
Action R R - R
bizLocation O O O O
bizStep O O O O
bizTransactionList O O O R
childEPCs - R - -
Disposition O O - O
epcClass - R -
epcList R - R
eventTime R R R R
parented - R - O
Quantity - - R -
readPoint O O O O

Table 2 Event fields with Event Types mapping (Master Data) [13][9]

Taking into consideration the above table we have bound the required ECReports
[20] that need to be produced (defined at the ECSpec) from the F&C layer so as
to be captured from the BEG Layer and eventually generate the equivalent EPC
RFID Events as shown in Table 3.

ECReport Names
Object
Event

Aggregation
Event

Quantity
Event

Transaction
Event

bizTransactionIDs O O O R
transactionItems R R R R
parentObjects - R - O
bizTransactionParentIDs - - - R

Table 3 ECReports name and Event Binding being used at the ECSpec Definition

The ECReport groups required from the BEG layer so as to produce the
equivalent RFID Event in Table 3 are explained as follows:

 bizTransactionIDs: Include only the Transaction ID EPC Classes set up to
be always reported, by making use of CURRENT at the ECReportSetSpec
Section 8.2.6 of [1].

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 44/102

 transactionItems: Include only the Transaction’s Items EPC Classes set up
to be reported only once, by making use of ADDITIONS at the
ECReportSetSpec Section 8.2.6 of [1].

 parentObjects: Include only the Transaction’s Parent Objects EPC Classes
for an Aggregation Event to be reported only once, by making use of
ADDITIONS at the ECReportSetSpec.

 bizTransactionParentIDs: Include only the Transaction’s Parent Transaction
EPC Classes set up to be always reported, by making use of CURRENT at
the ECReportSetSpec.

In the scope of APDL, all the above specifications and management attributes are
augmented with design data borrowed from the XPDL V1.0 specification [50] so
as to describe the processes workflow and to achieve the visualization of the
RFID solution.

6.4 Programmable Meta-Language Structure

From an implementation perspective, an APDL document is based on XML
syntax. As far as it concerns its vocabulary, the namespaces in Table 4 are used.

Elements Namespace
alelr:LRSpec urn:epcglobal:alelr:xsd:1
ale:ECSpec urn:epcglobal:ale:xsd:1
epcismd:EPCISMasterDataDocument urn:epcglobal:epcis-masterdata:xsd:1
xpdl:Transitions

http://www.wfmc.org/2002/XPDL1.0
xpdl:TransitionRestrictions
xpdl:ExtendedAttributes
xpdl:Description

Table 4 Namespaces used in APDL.

The APDL has a tree structure, as shown in Figure 16 below. The root element
which contains the description of a complete supply chain management scenario
is the Open Loop Composite Business Process (<OLCBProc/>).

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 45/102

Figure 16 APDL’s Schema graphical representation

“OLCBProc” contains a set of elements called Close Loop Composite Business
Process (<CLCBProc/>) that are capable of describing a complete close loop
supply chain scenario and the element of Transitions (<Transitions/>) which
carries the Close Loop Composite Business processes context-related semantics
description of Transitions between them which is based on the XPDL V1.0
specification [17].

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 46/102

Figure 17 APDL’ Schema design decomposition: OLCBProc

Each of the “CLCBProc” elements, shown in Figure 18, are consisted of a set
Elementary Business Process (<EBProc/>) elements that describe the
elementary Business Transactions, the CLCBProc’s Master Data in the form of an
EPCIS Master Data Document (<epcismd:EPCISMasterDataDocument/>) and the
object of Transitions (<Transitions/>) which carries the Elementary Business
Processes context-related semantics description of Transitions between them
which is based on the XPDL V1.0 specifications [50]. The EPCIS Master Data
Document element inside the CLCBProc element carries only the information of
the Business Location, the available Business Read Points, the traded items
Dispositions and the company’s available Business Steps.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 47/102

Figure 18 APDL’ Schema design decomposition: CLCBProc

The EBProc element, shown in Figure 19, is the most important in the APDL
specification since it contains the elementary business process description
appropriately modeled following the RFID Business logic we have defined (see
Section 6.3). This element contains:

 The TransitionRestrictions (<xpdl:TransitionRestrictions/>) element [50],
 The ExtendedAttributes (<xpdl:ExtendedAttributes/>) element, Which is

used to store the basic required RFID middleware configuration data.
 A set of DataFields (<apdl:DataFields/>), that include the required:

a. ECSpec (<ale:ECSpec/>),
b. LRSpec (<alelr:LRSpec/>), and
c. Master Data (<epcismd:EPCISMasterDataDocument/>) for

describing a specific elementary business process transaction
following the RFID Business logic.

 And finally a description (<xpdl:Description/>) element.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 48/102

Figure 19 APDL’ Schema design decomposition: EBProc

The complete APDL xml schema can be found at the APPENDIX II at the end of
this document.

6.5 Programmable Meta-Language Definition

6.5.1 APDL Main Elements

The tree main elements that construct the AspireRFID Process Description
Language are the:

 OLCBProc (Open Loop Composite Business Process)
 CLCBProc (Close Loop Composite Business Process)
 And EBProc (Elementary Business Process)

And are described in detail below.

6.5.1.1 Open Loop Composite Business Process (OLCBProc)

The OLCBProc, show in Table 5, is the parent element that is capable of
describing a complete RFID enabled supply chain management scenario from the
manufacturer to the retailer (see Figure 12 above). It is consisted of a list of
CLCBProc elements, their Transitions and a Master Data Document that contains
global company data. At this level the "epcismd:EPCISMasterDataDocument" is
used to store only Standard Vocabulary types and more specifically:

 the "urn:epcglobal:epcis:vtype:BusinessStep",
 the "urn:epcglobal:epcis:vtype:Disposition" and
 the "urn:epcglobal:epcis:vtype:BusinessTransactionType" types.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 49/102

Finally the OLCBProc’s name and id conclude this element’s description.

Namespace urn:ow2:aspirerfid:apdlspec:xsd:1

Diagram

Type apdl:OLCBProc
Properties content: complex
Model epcismd:EPCISMasterDataDocument{0,1} , apdl:CLCBProc+ , xpdl:Transitions

Children

Name Description
apdl:CLCBProc Close Loop Composite Business Process (see 6.5.1.2)

epcismd:EPCISMasterDataDocument

Stores the urn:epcglobal:epcis:vtype:BusinessStep,
the urn:epcglobal:epcis:vtype:Disposition, and the
urn:epcglobal:epcis:vtype:BusinessTransactionType
vocabularies [9].

xpdl:Transitions CLCBProc Transitions (see 6.5.2)

XSD Element

<xs:complexType name="OLCBProc">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1"
 ref="epcismd:EPCISMasterDataDocument" />
 <xs:element maxOccurs="unbounded" ref="apdl:CLCBProc" />
 <xs:element ref="xpdl:Transitions" />
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:anyURI" />
 <xs:attribute name="name" use="required" type="xs:NCName" />
</xs:complexType>

Instance

<apdl:OLCBProc id="" name="">
 <epcismd:EPCISMasterDataDocument creationDate="" schemaVersion="">
 {0,1}</epcismd:EPCISMasterDataDocument>
 <apdl:CLCBProc id="" name="">{1,unbounded}</apdl:CLCBProc>
 <xpdl:Transitions>{1,1}</xpdl:Transitions>
</apdl:OLCBProc>

Attributes
QName Type Fixed Default Use Description
id xs:anyURI required The OLCBProc’s ID
name Xs:NCName required The OLCBProc’s Name

Source <xs:element name="OLCBProc" type="apdl:OLCBProc" />

Table 5 OLCBProc element

6.5.1.2 Close Loop Composite Business Process (CLCBProc)

The CLCBProc element, shown in Table 6, is the responsible element for
describing a complete close loop supply chain management scenario that is
comprised from many elementary business processes (see Figure 12 above), their
transitions and a Master Data Document that contains Local company data. At
this level the "epcismd:EPCISMasterDataDocument" is used to store only User
Vocabulary types and more specifically:

 the "urn:epcglobal:epcis:vtype:BusinessLocation" and

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 50/102

 the "urn:epcglobal:epcis:vtype:ReadPoint" types.
Also the name and the id is required to distinct the Close Loop Composite
Business Processes one from another.

Namespace urn:ow2:aspirerfid:apdlspec:xsd:1

Diagram

Type apdl:CLCBProc
Properties content: complex
Used by Complex Type apdl:OLCBProc
Model xpdl:Description , apdl:EBProc+ , epcismd:EPCISMasterDataDocument{0,1} , xpdl:Transitions

Children

Name Description
apdl:EBProc Elementary Business Process (see 6.5.1.3)

epcismd:EPCISMasterDataDocument

The EPCISMasterDataDocument is used here to store
only the
 urn:epcglobal:epcis:vtype:BusinessLocation and the
urn:epcglobal:epcis:vtype:ReadPoint EPCIS
Vocabulary types [9].

xpdl:Transitions CLCBProc Transitions (see 6.5.2)
xpdl:Description The description of the CLCBProc (see 6.5.3.1)

XSD Element

<xs:complexType name="CLCBProc">
 <xs:sequence>
 <xs:element ref="xpdl:Description" />
 <xs:element maxOccurs="unbounded" ref="apdl:EBProc" />
 <xs:element minOccurs="0" maxOccurs="1"
 ref="epcismd:EPCISMasterDataDocument" />
 <xs:element ref="xpdl:Transitions" />
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:anyURI" />
 <xs:attribute name="name" use="required" type="xs:NCName" />
</xs:complexType>

Instance

<apdl:CLCBProc id="" name="">
 <xpdl:Description>{1,1}</xpdl:Description>
 <apdl:EBProc id="" name="">{1,unbounded}</apdl:EBProc>
 <epcismd:EPCISMasterDataDocument creationDate="" schemaVersion="">
 {0,1}</epcismd:EPCISMasterDataDocument>
 <xpdl:Transitions>{1,1}</xpdl:Transitions>
</apdl:CLCBProc>

Attributes
QName Type Fixed Default Use Description
id xs:anyURI required The CLCBProc’s ID
name Xs:NCName required The CLCBProc’s Name

Source <xs:element name="CLCBProc" type="apdl:CLCBProc" />

Table 6 CLCBProc element

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 51/102

6.5.1.3 Elementary Business Process (EBProc)

The EBProc element, shown in Table 7 below, is the most important element in
the APDL definition because it is responsible for describing an Elementary
Business Process (see Figure 12 above) by carrying all the information in a way
the AspireRFID middleware requires and “understands” so as to get
programmed.

This element more specifically contains:

 The EBProc’s ID, defined as the elements attribute, which will be the
Transaction URI (physical primary key) that will be stored to the
company’s Master Data Transaction vocabulary.

 The EBProc’s name, defined also as the elements attribute, which will be
used at the Transaction vocabulary as an attribute.

 The description (<xpdl:Description/>) of the Elementary Business Process
that will also be used at the Transaction vocabulary as an attribute

 A TransitionRestrictions (<xpdl:TransitionRestrictions/>) element,
containing a set of TransitionRestriction (<xpdl:TransitionRestriction/>)
elements[50].This element is used to describe the transitions between the
EBProc elements.

 An ExtendedAttributes (<xpdl:ExtendedAttributes/>) element, containing
a set of ExtendedAttribute (<xpdl:ExtendedAttribute/>) elements. This
element is used in order to store the basic configuration data, for instance
the ECSpec Subscription URI, and the element's graphical representation
data (x/y coordinates). In particular, the following key-value pairs are
stored: XOffset, YOffset, CellHeight, CellWidth which stores the required
variables for the workflow graphical representation. The set of
ExtendedAttributes also includes a set of configuration variables. In
particular, this set includes the following:

a. the EC Spec Subscription URI,
b. the ALE Client endpoint,
c. the ALE Logical Reader Client endpoint,
d. the EPCIS Capture interface endpoint,
e. the EPCIS query interface endpoint, and
f. the BEG Engine’s management interface Endpoint.

 And Finally a set of DataFields (<apdl:DataFields/>), that include the
required RFID middleware specification files which are:

o The EPCISMasterDataDocument
(<epcismd:EPCISMasterDataDocument/>) which will carry the
Transaction description which will be stored at the Company’s
Master Data Transaction vocabulary bind with the EBPrps’s ID
described above.

o The ECSpec file (<ale:ECSpec/>) for setting the F&C’s server
filtering configurations with using at the F&C’s defining command
the name the EBProc ID.

o And the LRSpec (<alelr:LRSpec/>) for setting the F&C’s server
Logical Readers configurations using as Logical reader name the
name included at the defined ECSpec.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 52/102

Namespace urn:ow2:aspirerfid:apdlspec:xsd:1

Diagram

Type apdl:ELCBProc
Properties content: complex
Used by Complex Type apdl:CLCBProc
Model xpdl:Description , xpdl:TransitionRestrictions , xpdl:ExtendedAttributes , apdl:DataFields

Children

Name Description
apdl:DataFields The EBProc’s Data Fields (see 6.5.1.3.3)
xpdl:ExtendedAttributes The EBProc’s Extended Attributes (see 6.5.1.3.2)
xpdl:TransitionRestrictions The EBProc’s Transition Restrictions (see6.5.1.3.1)
xpdl:Description The description of the CLCBProc (see 6.5.3.1)

XSD Element

<xs:complexType name="EBProc">
 <xs:sequence>
 <xs:element ref="xpdl:Description" />
 <xs:element ref="xpdl:TransitionRestrictions" />
 <xs:element ref="xpdl:ExtendedAttributes" />
 <xs:element ref="apdl:DataFields" />
 </xs:sequence>
 <xs:attribute name="id" type="xs:anyURI" />
 <xs:attribute name="name" type="xs:NCName" />
</xs:complexType>

Instance

<apdl:EBProc id="" name="">
 <xpdl:Description>{1,1}</xpdl:Description>
 <xpdl:TransitionRestrictions>{1,1}</xpdl:TransitionRestrictions>
 <xpdl:ExtendedAttributes>{1,1}</xpdl:ExtendedAttributes>
 <apdl:DataFields>{1,1}</apdl:DataFields>
</apdl:EBProc>

Attributes
QName Type Fixed Default Use Description
id xs:anyURI required The EBProc’s ID
name Xs:NCName required The EBProc’s Name

Source <xs:element name="EBProc" type="apdl:EBProc" />

Table 7 EBProc element

6.5.1.3.1 TransitionRestrictions Element

Transaction Restriction which is borrowed from the XPDL V1.0 specifications [50]
(Section 7.5.8) shown in Table 8 below provides further restrictions and context-
related semantics description of Transitions. In general, normal transition
restrictions may be declared at the level of the EBP boundary within the
surrounding process, whereas specialized flow conditions (subflow, or the

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 53/102

internal part of a route activity) operate “internal” to the EBP (but may reference
activities within the surrounding process definition). Further information about
the Transition Restrictions usage and schema can be found at the XPDL V1.0
[50] Section 7.5.8.

Namespace http://www.wfmc.org/2002/XPDL1.0

Diagram

Properties content: complex

Used by
Complex Type apdl:EBProc
Element xpdl:Activity

Model xpdl:TransitionRestriction
Children xpdl:TransitionRestriction

XSD Element

 <xsd:element name="TransitionRestrictions">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="xpdl:TransitionRestriction" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

Instance
<xpdl:TransitionRestrictions>
 <xpdl:TransitionRestriction>{0,unbounded}</xpdl:TransitionRestriction>
</xpdl:TransitionRestrictions>

Source

<xsd:element name="TransitionRestrictions">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="xpdl:TransitionRestriction"
 minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Table 8 TransitionRestrictions element

6.5.1.3.2 ExtendedAttributes Element

The ExtendedAttributes element, shown in Table 9 below is comprised from a List
of elements named ExtendedAttribute and are used to store the EBProc basic
configuration Data, like the ECSpec Subscription URI and BEG listening Port, and
the EBProc graphical representation data.

Namespace http://www.wfmc.org/2002/XPDL1.0

Diagram

Properties content: complex

Used by
Elements xpdl:DataField, xpdl:Transition
Complex Type apdl:EBProc

Model xpdl:ExtendedAttribute
Children xpdl:ExtendedAttribute The EBProc Extended Attribute (see 6.5.1.3.2.1)

XSD Element

<xsd:element name="ExtendedAttributes">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="xpdl:ExtendedAttribute" minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Instance

<xpdl:ExtendedAttributes>
 <xpdl:ExtendedAttribute Name=""
Value="">{0,unbounded}</xpdl:ExtendedAttribute>
</xpdl:ExtendedAttributes>

Source <xsd:element name="ExtendedAttributes">

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 54/102

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="xpdl:ExtendedAttribute" minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Table 9 ExtendedAttributes element

6.5.1.3.2.1 ExtendedAttribute Element

The ExtendedAttribute element, shown in Table 10 below, contains a name/value
pair that main objective is to store the following EBProc’s attributes:

 The EBProc’s Coordinates ExtendedAttribute which are responsible for the
Business Process Workflow Management Editor graphical representation by
providing:

o The element’s XOffset in the workspace,
o the element’s YOffset in the workspace,
o the element’s CellHeight in the workspace, and
o the element’s CellWidth in the workspace.

 And the AspireRFID “Basic Configuration” ExtendedAttribute which are
used to store various attributes required by the AspireRfid middleware to
configure it like:

o The EC Spec Subscription URI “ECSpecSubscriptionURI” required by
the Ale Configuration client to define where the generated reports
should be delivered.

o the ALE Client endpoint “AleClientEndPoint”,
o the ALE Logical Reader Client endpoint “AleLrClientEndPoint”,
o the EPCIS Capture interface endpoint “EpcisClientCaptureEndPoint”,
o the EPCIS query interface endpoint “EpcisClientQueryEndPoint”, and
o the BEG Engine’s management interface Endpoint

“BegEngineEndpoint”.

Namespace http://www.wfmc.org/2002/XPDL1.0

Diagram

Properties
content: complex
mixed: true

Used by Element xpdl:ExtendedAttributes
Model ANY element from ANY namespace

Attributes

QName Type Fixed Default Use Description

Name
xsd:NMTOK
EN

 required The Extended Attribute’s name

Value xsd:string required The Extended Attribute’s value

XSD Element

<xsd:element name="ExtendedAttribute">
 <xsd:complexType mixed="true">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:any minOccurs="0" maxOccurs="unbounded"

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 55/102

 processContents="lax" />
 </xsd:choice>
 <xsd:attribute name="Name" type="xsd:NMTOKEN" use="required" />
 <xsd:attribute name="Value" type="xsd:string" />
 </xsd:complexType>
</xsd:element>

Source

<xsd:element name="ExtendedAttribute">
 <xsd:complexType mixed="true">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:any minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </xsd:choice>
 <xsd:attribute name="Name" type="xsd:NMTOKEN" use="required" />
 <xsd:attribute name="Value" type="xsd:string" />
 </xsd:complexType>
</xsd:element>

Table 10 ExtendedAttribute element

6.5.1.3.3 DataFields Element

The DataFields element shown in Table 11 below is a list of elements (DataField)
that contains all the required AspireRFID specification files (ECSpecs, LRSpecs,
Master Data) for describing a specific Elementary Business Process (Transaction
Event).

Namespace urn:ow2:aspirerfid:apdlspec:xsd:1

Diagram

Properties content: complex
Used by Complex Type apdl:EBProc
Model apdl:DataField{3,unbounded}
Children apdl:DataField The EBProc Data list (see 6.5.1.3.3.1)

XSD Element

<xs:element name="DataFields">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="3" maxOccurs="unbounded"
 ref="apdl:DataField" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Instance
<apdl:DataFields>
 <apdl:DataField name="" type="">{3,unbounded}</apdl:DataField>
</apdl:DataFields>

Source

<xs:element name="DataFields">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="3" maxOccurs="unbounded"
 ref="apdl:DataField" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Table 11 DataFields element

6.5.1.3.3.1 DataField Element

Each DataField element can contain specification files the combination wich is
capable of describing an Elementary Business Process. A DataField can either be:

 EPC ECSpec document [1],
 EPCIS Master Data Document [9] or
 EPC LRSpec document [1]

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 56/102

Except from the above specification files, which are required, the DataField
element also carries the element’s ID, Name and Type which are optional and
used for future XPDL compatibility purposes.

Namespace urn:ow2:aspirerfid:apdlspec:xsd:1

Diagram

Properties content: complex
Used by Element apdl:DataFields
Model ale:ECSpec | epcismd:EPCISMasterDataDocument | alelr:LRSpec

Children

Name Description
ale:ECSpec EBProc’s ECSpec (see 6.5.1.3.4.2)
alelr:LRSpec EBProc’s LRSpec (see 6.5.1.3.4.3)

epcismd:EPCISMasterDataDocument
EBProc’s EPCIS Master Data Document (see
6.5.1.3.4.1)

XSD Element

<xs:element name="DataField">
 <xs:complexType>
 <xs:choice>
 <xs:element maxOccurs="1" ref="ale:ECSpec" />
 <xs:element maxOccurs="1"
 ref="epcismd:EPCISMasterDataDocument" />
 <xs:element maxOccurs="1" ref="alelr:LRSpec" />
 </xs:choice>
 <xs:attribute name="name" use="required" type="xs:NCName" />
 <xs:attribute name="type" use="required" type="xs:NCName" />
 </xs:complexType>
</xs:element>

Instance

<apdl:DataField name="" type="">
 <ale:ECSpec creationDate="" includeSpecInReports="false"
 schemaVersion="">
 {1,1}</
 ale:ECSpec>
 <epcismd:EPCISMasterDataDocument creationDate=""
 schemaVersion="">
 {1,1}</
 epcismd:EPCISMasterDataDocument>
 <alelr:LRSpec creationDate=""
 schemaVersion="">{1,1}</alelr:LRSpec>
</apdl:DataField>

Attributes
QName Type Fixed Default Use Description
name xs:NCName required DataField Name
type Xs:NCName required DataField Type

Source

<xs:element name="DataField">
 <xs:complexType>
 <xs:choice>
 <xs:element maxOccurs="1" ref="ale:ECSpec" />
 <xs:element maxOccurs="1"
 ref="epcismd:EPCISMasterDataDocument" />
 <xs:element maxOccurs="1" ref="alelr:LRSpec" />
 </xs:choice>
 <xs:attribute name="name" use="required" type="xs:NCName" />

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 57/102

 <xs:attribute name="type" use="required" type="xs:NCName" />
 </xs:complexType>
</xs:element>

Table 12 DataField element description

6.5.1.3.4 EBProc’s Complex Data Types

APDL uses complex data typed from the EPC specifications [11] that are inborn
supported from the specification language. These data types are described below

6.5.1.3.4.1 EPCISMasterDataDocument

APDL uses the epcismd:EPCISMasterDataDocument element [9] to store the
Company’s Master Data. These Master Data are stored to the EPCIS Repository
with the form of specific Vocabularies. Vocabularies are used extensively within
EPCIS to model conceptual and physical entities that exist in the real world. EPC
Specifications distinguish these vocabularies into two logical units that follow
different patterns in the way they are defined and extended over time. These two
kinds are the Standard and the User Vocabulary.

“A Standard Vocabulary represents a set of Vocabulary Elements whose
definition and meaning must be agreed to in advance by trading partners
who will exchange events using the vocabulary. Standard Vocabulary
elements tend to be defined by organizations of multiple end users, such
as EPCglobal, industry consortia outside EPCglobal, private trading partner
groups, and so on. The master data associated with Standard Vocabulary
elements are defined by those same organizations, and tend to be
distributed to users as part of a specification or by some similar means.”
[9]

“A User Vocabulary represents a set of Vocabulary Elements whose
definition and meaning are under the control of a single organization. User
Vocabulary elements are primarily defined by individual end user
organizations acting independently. The master data associated with User
Vocabulary elements are defined by those same organizations, and are
usually distributed to trading partners through the EPCIS Query Control
Interface or other data exchange / data synchronization mechanisms. New
vocabulary elements within a given User Vocabulary are introduced at the
sole discretion of an end user, and trading partners must be prepared to
respond accordingly.” [9]

The following table (Table 13) summarizes the vocabulary types defined in the EPCIS
Specs:

Vocabulary Type User /
Standard

URI

BusinessStepID Standard urn:epcglobal:epcis:vtype:BusinessStep
DispositionID Standard urn:epcglobal:epcis:vtype:Disposition
BusinessTrasactionTypeID Standard urn:epcglobal:epcis:vtype:BusinessTransactionType
BusinessLocationID User urn:epcglobal:epcis:vtype:BusinessLocation
ReadPointID User urn:epcglobal:epcis:vtype:ReadPoint
BusinessTransaction User urn:epcglobal:epcis:vtype:BusinessTransaction

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 58/102

Table 13 EPCIS Vocabulary Types

APDL has used the Standard/User definition to hierarchically place the required
vocabularies within its structure. So “BusinessStepID”, “DispositionID” and
“BusinessTrasactionTypeID” was placed at the OLCBProc level as they keep
“Standard” information to be used from the whole supply chain.
“BusinessLocationID” and “ReadPointID” has been placed at the CLCBProc level
as it keeps data relative to a specific location that the CLCBProc describes and
can be used from all the EBProces within it. And finally “BusinessTransaction”
Vocabulary Type has been placed at the EBProc level as it keeps Data concerning
a specific Business Step.

Namespace urn:epcglobal:epcis-masterdata:xsd:1

Diagram

Type epcismd:EPCISMasterDataDocumentType
Properties content: complex

Used by
Element apdl:DataField
Complex Types apdl:CLCBProc, apdl:OLCBProc

Model
EPCISHeader{0,1} , EPCISBody , extension{0,1} , ANY element from ANY namespace OTHER
than 'urn:epcglobal:epcis-masterdata:xsd:1'

Children EPCISBody, EPCISHeader, extension

XSD Element
<xsd:element name="EPCISMasterDataDocument"
type="epcismd:EPCISMasterDataDocumentType" />

Instance

<epcismd:EPCISMasterDataDocument creationDate=""
 schemaVersion="">
 <EPCISHeader>{0,1}</EPCISHeader>
 <EPCISBody>{1,1}</EPCISBody>
 <extension>{0,1}</extension>
</epcismd:EPCISMasterDataDocument>

Attributes
QName Type Fixed Default Use
creationDate xsd:dateTime required
schemaVersion xsd:decimal required

Source
<xsd:element name="EPCISMasterDataDocument"
type="epcismd:EPCISMasterDataDocumentType" />

Table 14 EPCISMasterDataDocument element

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 59/102

APDL for being able to set up the EBProc’s Event description uses a compatible
with the AspireRFID architecture (for the EPCIS layer)
EPCISMasterDataDocument element [9] shown in Table 14 above which carries
the information shown in Table 15 below [80].

Attribute Name Attribute URI
EventName urn:epcglobal:epcis:mda:event_name
EventType urn:epcglobal:epcis:mda:event_type
BusinessStep urn:epcglobal:epcis:mda:business_step
BusinessLocation urn:epcglobal:epcis:mda:business_location
Disposition urn:epcglobal:epcis:mda:disposition
ReadPoint urn:epcglobal:epcis:mda:read_point
TransactionType urn:epcglobal:epcis:mda:transaction_type
Action urn:epcglobal:epcis:mda:action

Table 15 Business Transaction Attributes

6.5.1.3.4.2 ECSpec

APDL for being able to set up the EBProc’s Filtering Needs uses a compatible with
the AspireRFID architecture (for the F&C layer) ECSpec [1] (<ale:ECSpec/>)
element shown in Table 16 below which will be configured the way D4.3a [80]
defines at section 7.2.1.1 without the report name IDs concatenated to them.
For the report names ID at the configuration time the EBProc’s ID will be used.

 <xs:element name="ECSpec" type="ale:ECSpec"></xs:element>

Table 16 ECSpec element

6.5.1.3.4.3 LRSpec

APDL for being able to set up the EBProc’s Logical Readers uses a compatible
with the AspireRFID architecture (for the F&C layer) dynamic definition LRSpec
element [1] (<alelr:LRSpec/>) shown in Table 17 below. For the name of the
logical reader the DataField’s name would be used that is defining the reader.

 <xs:element name="LRSPec" type="alelr:LRSpec"></xs:element>

Table 17 LRSpec element

6.5.2 Transitions

The Transitions description philosophy is borrowed from the XPDL V1.0 (XML
Process Description Language). Transition Information is defined as the possible
transitions between activities which in our case are the Elementary Business
Process (EBProc) and the conditions that enable or disable them (the transitions)
during workflow execution. Further control and structure restrictions may be
expressed in the EBProc (defined as activity in XPDL) definition (see
TransitionRestrictions). More details about Transition Information and Restrictions
can be found at the XPDL specifications V1.0 [50] Section 7.6 and 7.5.8
respectively.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 60/102

Namespace http://www.wfmc.org/2002/XPDL1.0

Diagram

Properties content: complex
Used by Complex Types apdl:CLCBProc, apdl:OLCBProc
Model xpdl:Transition
Children xpdl:Transition

XSD Element

<xsd:element name="Transitions">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="xpdl:Transition" minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Instance

<xpdl:Transitions>
 <xpdl:Transition From="" Id="" Name=""
To="">{0,unbounded}</xpdl:Transition>
</xpdl:Transitions>

Source

<xsd:element name="Transitions">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="xpdl:Transition" minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Table 18 XPDL Transitions element

Elementary Business Processes are related to one another via flow control
conditions (transition information). XPDL 1.0 defines for each individual transition
to have three elementary properties, the from-EBP, the to-EBP and the condition
under which the transition is made. Transition from one EBP to another may be
conditional (involving expressions which are evaluated to permit or inhibit the
transition) or unconditional. The transitions within a process may result in the
sequential or parallel operation of individual EBPs within the process. The
information related to associated split or join conditions is defined within the
appropriate EBP (see TransitionRestrictions), split as a form of “post EBP”
processing in the from-EBP, join as a form of “pre-EBP” processing in the to-
EBP. This approach allows the workflow control processing associated with
process instance thread splitting and synchronization to be managed as part of
the associated EBP, and retains transitions as simple route assignment functions.
The scope of a particular transition is local to the process definition, which
contains it and the associated activities.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 61/102

Namespace http://www.wfmc.org/2002/XPDL1.0

Diagram

Properties content: complex
Used by Element xpdl:Transitions
Model xpdl:Condition{0,1} , xpdl:Description{0,1} , xpdl:ExtendedAttributes{0,1}
Children xpdl:Condition, xpdl:Description, xpdl:ExtendedAttributes

XSD Element

<xsd:element name="Transition">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="xpdl:Condition" minOccurs="0" />
 <xsd:element ref="xpdl:Description" minOccurs="0" />
 <xsd:element ref="xpdl:ExtendedAttributes" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:NMTOKEN" use="required" />
 <xsd:attribute name="From" type="xsd:NMTOKEN" use="required" />
 <xsd:attribute name="To" type="xsd:NMTOKEN" use="required" />
 <xsd:attribute name="Name" type="xsd:string" />
 </xsd:complexType>
</xsd:element>

Instance

<xpdl:Transition From="" Id="" Name="" To="">
 <xpdl:Condition Type="">{0,1}</xpdl:Condition>
 <xpdl:Description>{0,1}</xpdl:Description>
 <xpdl:ExtendedAttributes>{0,1}</xpdl:ExtendedAttributes>
</xpdl:Transition>

Attributes

QName Type Fixed Default Use
From xsd:NMTOKEN required
Id xsd:NMTOKEN required
Name xsd:string required
To xsd:NMTOKEN required

Source

<xsd:element name="Transition">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="xpdl:Condition" minOccurs="0" />
 <xsd:element ref="xpdl:Description" minOccurs="0" />
 <xsd:element ref="xpdl:ExtendedAttributes" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:NMTOKEN" use="required" />
 <xsd:attribute name="From" type="xsd:NMTOKEN" use="required" />
 <xsd:attribute name="To" type="xsd:NMTOKEN" use="required" />
 <xsd:attribute name="Name" type="xsd:string" />
 </xsd:complexType>
</xsd:element>

Table 19 XPDL Transition element

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 62/102

6.5.3 Basic Elements

6.5.3.1 Description

For describing the various elements APDL uses a simple string type element
shown in Table 20 below named Description.

 <xs:element name="Description" type="xs:string" />

Table 20 Description element

Name Description
Description Description of various elements of Type sting

Table 21 Description element description

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 63/102

Section 7 Tools that facilitates APDL’s Usability

7.1 Business Process Workflow Management Editor (BPWME)

One of the benefits of an RFID Solution language is that it can boost visual
development of RFID solutions, which could obviate the need for tedious low-
level programming. In the case of the APDL language we have designed and
prototyped an Eclipse plug-in to enable the visual modeling and configuration of
RFID enabled processes. This tool is conveniently called Business Process
Workflow Management Editor (BPWME) and is illustrated in Figure 20.

Figure 20 BPWME Designer Editor View

BPWME provides to the RFID designer the ability to describe a complex RFID
solution with the help of a workflow diagram and to be guided to give as input all
the required information so as to build the desired EBProc’s.

Our experience with BPWME shows that a workflow process design is a more
straightforward procedure compared to detailed configurations of distributed
software and hardware components by using various configuration interfaces. As
such, the use of the workflow editor reduces significantly the time and effort
required to configure an RFID solution. Additionally, it provides the ability of
encoding and storing complete RFID solutions in a single configuration file. This
can greatly facilitate reusability across classes of similar RFID solutions, since it
allows adapting existing solutions rather than developing from scratch.
Furthermore, BPWME reduces the knowledge overhead imposed by the need to

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 64/102

use various tools, while at the same time easing debugging and maintenance
efforts.

In Figure 21 below we can see the Logical Reader Editing tab. There someone
could define the Logical Readers that will be used at a CLCBProc and could be
reused from the EBProces that belongs to it.

Figure 21 CLCBProc’s available Logical Readers Editing

In Figure 22 below, at the lower left (properties) tab, we can see the Logical
Reader Editing Advanced tab were someone can set up new “standardized”
attributes that could be used at the different Readers configuration. This way if a
company uses its own proprietary RFID Reader HAL it could extend the LRSpec
configurator with additional attributes.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 65/102

Figure 22 CLCBProc’s Advanced Logical Readers configuration Editing

In Figure 23 below, at the upper right Tab, we can see the ECSpec configuration.
Depending on the Event which we have chosen at the EBProc creation the
equivalent reports filters are required from the user to be filled. These reports
can be filed by clicking on the report name where at the Properties tab
automatically the specific’s report list appears.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 66/102

Figure 23 EBProc’s ECSpec Configuration

In Figure 24 below, at the upper right (Master Data Editor) Tab, we can see where
someone could edit the EBProc’s Transaction attributes that are consisted from
User and Standard Vocabularies. The CLCBProc’s Business Location can be edited
with the help of the Business Location Diagram, shown below, where after
editing it the User could use the read point provided list to add to the EBProc’s
BizTransaction configuration he sets up.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 67/102

Figure 24 CLCBProc BizLocation & EBProc MasterData Editing

In Figure 25 below, at the upper right tab, we can see the Standard Vocabulary
attributes configuration (e.g. Business Step) that could be used from the Hole
Company (the same list for all the CLCBProcs).

Figure 25 CLCBProc BizLocation & Standard Vocabulary (BizStep) Editing

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 68/102

Finally in Figure 26 below we can see the APDL XML file that is produced and
automatically provided every time we choose the specific Tab.

Figure 26 BPWME’s created APDL XML file preview

7.2 Programmable Engine

A middleware layer that facilitates the RFID development and augments the
BPWME and APDL’s functionality is the Programmable Engine (PE) [82] module.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 69/102

Figure 27 Programmable Engine

The PE, as shown in Figure 27, bridges APDL with the underlying RFID middleware
infrastructure, through “hiding” the lower-level details of the middleware from
the APDL developer. PE is a run-time middleware infrastructure that is able to
resolve APDL to the number of configuration files, which are required for the
deployment of an APDL solution over an RFID middleware infrastructure. Thanks
to the APDL and its respective PE, RFID developers are capable of assembling
and configuring RFID solutions in a high-level language, by using the BPWME
plug-in, in a way that is totally transparent to the low-level middleware libraries
(such as those enabling filtering, collection and business event generation).

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 70/102

Section 8 Describing an RFID Workflow Process using APDL

8.1 Overview

In this Section we will use the Receiving Example provided at deliverable D4.3a
(Programmable Filters – FML Specification). At the D4.3a’s example we described
how the different modules should be configured separately, with the help of the
different specification files required, to serve the receiving process of a specific
warehouse. In this example we will describe how an APDL (AspireRFID Process
Description Language) specification file should be defined so as to be able to
configure the whole AspireRFID middleware to serve a warehouse receiving
process. So let’s start by remembering the problem description.

8.2 Describing the Problem

A Company Named “ACME” which is a Personal Computer Assembler collaborates
with a Microchip Manufacturer that provides it with the required CPUs. ACME at
regular basis places orders to the Microchip Manufacturer for specific CPUs. ACME
owns a Central building with three Warehouses. The first warehouse named
Warehouse1 has 2 Sections named Section1 and Section2. Section1 has an
entrance point where the delivered goods arrive.

ACME needs a way to automatically receive goods at Warehouse1 Section1 and
inform its WMS for the new product availability and the correct completeness of
each transaction.

8.3 Solution Requirements

An RFID Portal should be placed to ACME’s Warehouse1 Section1 entrance point
which will be called ReadPoint1. The RFID portal will be equipped with one
Reader WarehouseRfidReader1. The received goods should get equipped with
preprogrammed RFID tags from their “Manufacturer”. The received goods should
be accompanied with a preprogrammed RFID enabled delivery document. And
finally AspireRFID middleware (Figure 28 below) should be configured for the
specific scenario.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 71/102

Figure 28 AspireRFID Architecture

8.4 Building the Required APDL Specification File

First, we need to define the OLCBProc which will include all the CLCBProcs.
Because we are referring to only one Business Location of the “Acme Supply
Chain” only one CLCBProc will be required and is shown in Table 22 with ID:
“urn:epcglobal:fmcg:bti:acmesupplying”. Furthermore, we set up a Master
Data Document that describes Acme’s Warehouse assets, like Read Points that
will be used later from all the EBProc definitions for this specific CLCBProc.
Finally, in this CLCBProc definition we can find the “transitions” element which is
not used in this example because we are not defining any other CLCBProcs and
the EBProc element.

<apdl:OLCBProc id="urn:epcglobal:fmcg:bti:openloopsupplychain"
 name="AcmeSupplyChainManagement">
 <apdl:CLCBProc id="urn:epcglobal:fmcg:bti:acmesupplying"
 name="AcmeWarehouseBusinessProcess">
 <xpdl:Description>Acme Supply Chain</xpdl:Description>
 <epcismd:EPCISMasterDataDocument>
 <EPCISBody>
 <VocabularyList>
 <Vocabulary type="urn:epcglobal:epcis:vtype:BusinessLocation">
 <VocabularyElementList>
 <VocabularyElement
 id="urn:epcglobal:fmcg:loc:greece:pireus:mainacme">
 <attribute id="urn:epcglobal:epcis:mda:Name"
 value="Acme" />
 <attribute id="urn:epcglobal:epcis:mda:Address"
 value="Akadimias 3" />
 <attribute id="urn:epcglobal:epcis:mda:City"
 value="Pireus" />
 <attribute id="urn:epcglobal:epcis:mda:Country"
 value="Greece" />
 </VocabularyElement>
 <VocabularyElement

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 72/102

 id="urn:epcglobal:fmcg:loc:greece:pireus:mainacme,
 urn:epcglobal:fmcg:loc:acme:warehouse1">
 <attribute id="urn:epcglobal:epcis:mda:Name"
 value="AcmeWarehouse1" />
 <attribute id="urn:epcglobal:epcis:mda:Read Point"
 value="urn:epcglobal:fmcg:loc:rp:45632.Warehouse1DocDoor" />
 </VocabularyElement>
 <VocabularyElement
 id="urn:epcglobal:fmcg:loc:greece:pireus:mainacme,
 urn:epcglobal:fmcg:loc:acme:warehouse2">
 <attribute id="urn:epcglobal:epcis:mda:Name"
 value="AcmeWarehouse2" />
 <attribute id="urn:epcglobal:epcis:mda:Read Point"
 value="urn:epcglobal:fmcg:loc:rp:06141.Warehouse2DocDoor" />
 </VocabularyElement>
 </VocabularyElementList>
 </Vocabulary>
 <Vocabulary type="urn:epcglobal:epcis:vtype:ReadPoint">
 <VocabularyElementList>
 <VocabularyElement
 id="urn:epcglobal:fmcg:loc:rp:45632.Warehouse1DocDoor">
 <attribute id="urn:epcglobal:epcis:mda:Name"
 value="Warehouse1DocDoor" />
 </VocabularyElement>
 <VocabularyElement
 id="urn:epcglobal:fmcg:loc:rp:06141.Warehouse2DocDoor">
 <attribute id="urn:epcglobal:epcis:mda:Name"
 value="Warehouse2DocDoor" />
 </VocabularyElement>
 </VocabularyElementList>
 </Vocabulary>
 </VocabularyList>
 </EPCISBody>
 </epcismd:EPCISMasterDataDocument>
 <apdl:EBProc id="urn:epcglobal:fmcg:bte:acmewarehouse1receive"
 name="Warehouse1DocDoorReceive">
 ………
 </apdl:EBProc>
 <xpdl:Transitions>
 </xpdl:Transition>
 </xpdl:Transitions>
 </apdl:CLCBProc>
</apdl:OLCBProc>

Table 22 CLCBProc Element

In order to describe the EBProc shown in Table 23 except defining the
“TransitionRestrictions” element, which is empty here because we are not
defining any other EBProcs, we are defining the “ExtendedAttributes” element.
This element includes the graphical representation of the EBProc object to be
used from a graphical editor and the required modules Endpoints to be used from
a process engine so as to set up the defined solution.

<apdl:EBProc id="urn:epcglobal:fmcg:bte:acmewarehouse1receive"
 name="Warehouse1DocDoorReceive">
 <xpdl:Description>Acme Warehouse 3 Receiving ReadPoint5 Gate3
 </xpdl:Description>
 <xpdl:TransitionRestrictions>

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 73/102

 </xpdl:TransitionRestriction>
 </xpdl:TransitionRestrictions>
 <xpdl:ExtendedAttributes>
 <xpdl:ExtendedAttribute Name="XOffset" Value="204" />
 <xpdl:ExtendedAttribute Name="YOffset" Value="204" />
 <xpdl:ExtendedAttribute Name="CellHeight" Value="30" />
 <xpdl:ExtendedAttribute Name="CellWidth" Value="313" />
 <xpdl:ExtendedAttribute
 Name="ECSpecSubscriptionURI"
 Value="http://localhost:9999" />
 <xpdl:ExtendedAttribute
 Name="AleClientEndPoint"
 Value="http://localhost:8080/aspireRfidALE/services/ALEService" />
 <xpdl:ExtendedAttribute
 Name="AleLrClientEndPoint"
 Value="http://localhost:8080/aspireRfidALE/services/ALELRService" />
 <xpdl:ExtendedAttribute
 Name="EpcisClientCaptureEndPoint"
 Value="http://localhost:8080/aspireRfidEpcisRepository/capture" />
 <xpdl:ExtendedAttribute
 Name="EpcisClientQueryEndPoint"
 Value="http://localhost:8080/aspireRfidEpcisRepository/query" />
 <xpdl:ExtendedAttribute
 Name="BegEngineEndpoint"
 Value="http://localhost:8080/aspireRfidBEG/begengine" />
 </xpdl:ExtendedAttributes>
 <apdl:DataFields>
 ………
 </apdl:DataFields>
</apdl:EBProc>

Table 23 AcmeWarehouse3Ship EBProc

DataFields contains the specification files required to configure the AspireRFID
Filtering & Collection server (by defining the ECSpec and LRSpec) and the
Business Event Generator (By defining the Transaction Vocabulary at the EPCIS’s
repository Master Data thru an EPCISMasterDataDocument).

8.4.1 Filtering and collection Module Required Data Fields

8.4.1.1 ECSpec definition

To Configure the Filtering and collection Module an ECSpec is required for
creating Object Events for the Class of “products” and the Class of “receiving
notes” that we expect to pass through the gate and that concerns our
transaction. For the “bizTransactionIDs” reportSpec we will set the “receiving
notes” Class ID’s and for the “transactionItems” reportSpec we will set the
“received items” Class ID’s

 So the “receiving notes” Class is:
o urn:epc:pat:gid-96:145.12.*

 and the “received items” Classes are:
o urn:epc:pat:gid-96:145.233.*
o urn:epc:pat:gid-96:145.255.*

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 74/102

So the ECSpec DataField that should be created is shown in Table 24 below. Note
that at the configuration time the ECSpec name that will be used is the ECSpec
DataField ID and at the ECRepot names the EBProc’s ID will be concatenated to
them for example the bizTransactionIDs will become
bizTransactionIDs@urn:epcglobal:fmcg:bte:acmewarehouse1receive and the
transactionItems will become
transactionItems@urn:epcglobal:fmcg:bte:acmewarehouse1receive that are
required to be delivered to the BEG engine.

<apdl:DataField type="ECSpec" name="RecievingECSpec">
 <ale:ECSpec includeSpecInReports="false">
 <logicalReaders>
 <logicalReader>SmartLabImpinjSpeedwayLogicalReader
 </logicalReader>
 </logicalReaders>
 <boundarySpec>
 <repeatPeriod unit="MS">5500</repeatPeriod>
 <duration unit="MS">5500</duration>
 <stableSetInterval
 unit="MS">0</stableSetInterval>
 </boundarySpec>
 <reportSpecs>
 <reportSpec reportOnlyOnChange="false"
 reportName="bizTransactionIDs" reportIfEmpty="true">
 <reportSet set="CURRENT" />
 <filterSpec>
 <includePatterns>
 <includePattern>urn:epc:pat:gid-96:145.12.*
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
 </reportSpec>
 <reportSpec reportOnlyOnChange="false"
 reportName="transactionItems" reportIfEmpty="true">
 <reportSet set="ADDITIONS" />
 <filterSpec>
 <includePatterns>
 <includePattern>urn:epc:pat:gid-96:145.233.*
 </includePattern>
 <includePattern>urn:epc:pat:gid-96:145.255.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
 </reportSpec>
 </reportSpecs>
 <extension />
 </ale:ECSpec>
</apdl:DataField>

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 75/102

Table 24 ECSpec DataField

Note that in Appendix I Table 28 the complete APDL XML document describing
this example can be found.

8.4.1.2 LRSpec Definition

For the LRSpec DataField definition the dynamic LRSpec definition of an Impinj
Speedway LLRP reader is used as shown in Table 25 below where at the
configuration time the LRSpec DataField’s name
(SmartLabImpinjSpeedwayLogicalReader) will be used as the Logicals Reader
name which is included also at the ECSpec’s LogicalReader list.

<apdl:DataField type="LRSpec" name="SmartLabImpinjSpeedwayLogicalReader">
 <alelr:LRSpec>
 <isComposite>false</isComposite>
 <readers />
 <properties>
 <property>
 <name>Description</name>
 <value>This Logical Reader consists of read point 1,2,3
 </value>
 </property>
 <property>
 <name>ConnectionPointAddress</name>
 <value>192.168.212.238</value>
 </property>
 <property>
 <name>ConnectionPointPort</name>
 <value>5084</value>
 </property>
 <property>
 <name>ReadTimeInterval</name>
 <value>4000</value>
 </property>
 <property>
 <name>PhysicalReaderSource</name>
 <value>1,2,3</value>
 </property>
 <property>
 <name>RoSpecID</name>
 <value>1</value>
 </property>
 <property>
 <name>ReaderType</name>
 <value>org.ow2.aspirerfid.ale.server.readers.llrp.LLRPAdaptor
 </value>
 </property>
 </properties>
 </alelr:LRSpec>
</apdl:DataField>

Table 25 LRSpec DataField

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 76/102

8.4.2 BEG Module Required Data Field

The Business Event Generator needs to get the Transaction Event to serve which
is the Warehouse1DocDoorReceive (with URI
urn:epcglobal:fmcg:bte:acmewarehouse1receive) and the description of it from
the Information Sharing module repository which should be set up using the
information from Table 26 below.

Business Transaction Attribute
Name

Business Transaction Attribute Value

urn:epcglobal:epcis:mda:event_name Warehouse1DocDoorReceive
urn:epcglobal:epcis:mda:event_type ObjectEvent
urn:epcglobal:epcis:mda:business_step urn:epcglobal:fmcg:bizstep:receiving
urn:epcglobal:epcis:mda:business_location urn:epcglobal:fmcg:loc:acme:warehouse1
urn:epcglobal:epcis:mda:disposition urn:epcglobal:fmcg:disp:in_progress
urn:epcglobal:epcis:mda:read_point urn:epcglobal:fmcg:loc:45632.Warehouse1DocDoor
urn:epcglobal:epcis:mda:transaction_type urn:epcglobal:fmcg:btt:receiving
urn:epcglobal:epcis:mda:action ADD

Table 26 Master Data (Specifying a Transaction Event)

So we create an EPCISMasterDataDocument DataField shown in Table 27 below.
Note that we are not including the required from the BEG engine ECReport
names at the description as we did at the D4.3a’s example because this
information can get retrieved from the EBProc’s ID and the Event Type. Because
this is an Object Event we know that two reports are required the
bizTransactionIDs and the transactionItems where the EBProc ID
urn:epcglobal:fmcg:bte:acmewarehouse1receive will get concatenated.

<apdl:DataField type="EPCISMasterDataDocument"
 name="RecievingMasterData">
 <epcismd:EPCISMasterDataDocument>
 <EPCISBody>
 <VocabularyList>
 <Vocabulary
 type="urn:epcglobal:epcis:vtype:BusinessTransaction">
 <VocabularyElementList>
 <VocabularyElement
 id="urn:epcglobal:fmcg:bte:acmewarehouse1receive">
 <attribute
 id="urn:epcglobal:epcis:mda:event_name"
 value="Warehouse1DocDoorReceive" />
 <attribute
 id="urn:epcglobal:epcis:mda:event_type"
 value="ObjectEvent" />
 <attribute
 id="urn:epcglobal:epcis:mda:business_step"
 value="urn:epcglobal:fmcg:bizstep:receiving" />
 <attribute
 id="urn:epcglobal:epcis:mda:business_location"
 value="urn:epcglobal:fmcg:loc:acme:warehouse1" />
 <attribute

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 77/102

 id="urn:epcglobal:epcis:mda:disposition"
 value="urn:epcglobal:fmcg:disp:in_progress" />
 <attribute
 id="urn:epcglobal:epcis:mda:read_point"
 value="urn:epcglobal:fmcg:loc:45632.Warehouse1DocDoor" />
 <attribute
 id="urn:epcglobal:epcis:mda:transaction_type"
 value="urn:epcglobal:fmcg:btt:receiving" />
 <attribute
 id="urn:epcglobal:epcis:mda:action"
 value="ADD" />
 </VocabularyElement>
 </VocabularyElementList>
 </Vocabulary>
 </VocabularyList>
 </EPCISBody>
 </epcismd:EPCISMasterDataDocument>
</apdl:DataField>

Table 27 EPCISMasterDataDocument DataField

As mentioned before note that in Appendix I Table 28 the complete APDL XML
document describing this example can be found.

8.5 Process Description

As described in Section 9.6 of D4.3a (Programmable Filters – FML Specification)
ACME gives an order with a specific deliveryID to the Microchip Manufacturer.
With the previous action AspireRfid Connector subscribes to the AspireRfid EPCIS
Repository to retrieve events concerning the specific deliveryID.

Figure 29 Acme computer parts Delivery

As visualized at Figure 29 above the order arrives to ACME’s premises. ACME’s
RFID portal (ReadPoint1) reads the deliveryID and all the products that follow

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 78/102

with the help of WarehouseRfidReader1. AspireRfid ALE filters out the readings
and sends two reports to AspireRfid BEG, one with the deliveryID and one with
all the products tags. AspireRfid BEG collects these reports, binds the deliveryID
with the products tags and sends this event to the AspireRfid EPCIS Repository.
The AspireRfid EPCIS Repository informs the Connector for the incoming event
which in his turn sends this information to ACME’s WMS. When the WMS confirms
that all the requested products were delivered it sends a “transaction finish”
message to the AspireRfid Connector which in his turn unsubscribe for the
specific deliveryID and sends a “transaction finish” to the RFID Repository.

The example demonstrates how the different configuration details can be put into
action in order to provide concrete solutions to business-process problems. For
readability’s sake the solution at this example was kept as simple as possible. In
real-world scenarios, more business processes and more variables would be
involved, leading to more complicated solutions.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 79/102

Section 9 Conclusions

This deliverable defines a process oriented meta-language (i.e. the APDL
language) for describing non-trivial end-to-end RFID based solutions. The
document was particularly concentrated on the concept of language-oriented
programming, and provided a detailed overview of the available models,
workflows and languages. It has presented the Business Process Modeling
(Definition) and its different tools (Modeling Notation, Diagrams), as well as
activity diagrams (UML) and a list of Business Process Modeling Languages
(BPML, BPEL, XPDL, YAWL). The conducted review revealed the absence of a
configuration language tailored to RFID solutions.

Further, this deliverable focused on some specific types of Open Source Software
Business Process Modeling Languages based on the XML Process Definition
Language (XPDL). In this way, a description of Enhydra JaWE, Nova Bonita,
Eclipse Java Workflow Tooling and YAPROC has been provided. These 4 XPDL
editors have then been analyzed and compared to determine which suited the
best to the ASPIRE paradigm. The analysis revealed that none of the above
mentioned editors were suitable enough for the needs of ASPIRE, or the effort
needed to adapt them to ASPIRE would be too big. All the above led us to design
our own Business Process Modeling Language the AspireRFID Process Description
Language (APDL) and later on a design tool, which was further described in
details (in Section 7.1).

The introduced meta-language leverages the EPCglobal architecture and
standards, since APDL solutions make use of EPC specifications towards full
describing an RFID based solution. Nevertheless, the introduced language also
includes concepts that extend the EPCglobal architecture, mainly in the areas of
business events generation and enterprise applications integration.

APDL covers the wide range of solutions, which can be built based on the
architecture blueprint provided by EPCglobal. Specifically, a rich set of RFID
solutions can be described using constructs such as logical readers, company
master data, specifications for tag data filtering, as well as automated generation
of business events. Hence, APDL is not constrained to logistics scenarios, but it
extends to a wider set of solution that can be expressed using ADPL elements. In
the scope of this deliverable we have illustrated some realistic RFID systems and
their description based on APDL (Section 8).

We envisage that APDL could serve as a basis for an open specification of RFID
solutions. Such a specification could greatly facilitate the development,
deployment and integration of RFID solutions thus minimizing the total cost of
ownership associated with an RFID solution deployment. Along with ease of
deployment, APDL can also contribute to the faster prototyping of RFID solutions.
It is also noteworthy that APDL is amendable by visual tools. This can further
alleviate the task of developing and integrating RFID middleware solutions,
through the replacement of low-level programming with visual development
activities.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 80/102

Section 10 List of Acronyms

ALE Application Level Event
APDL AspireRFID Process Description Language
API Application Product Interface
ASPIRE Advanced Sensors and lightweight Programmable middleware for

Innovative Rfid Enterprise applications
BEG Business Event Generator
BPD Business Process Diagram
BPDM Business Process Definition Metamodel
BPEL Business Process Execution Language
BPM Business Process Management
BPM Business Process Modeling
BPML Business Process Modeling Language
BPMN Business Process Modeling Notation
CLCBProc Close Loop Composite Business Process
DoW Description of Work
EBProc Elementary Business Process
EPC Electronic Product Code
EPCIS Electronic Product Code Information Services
ERP Enterprise Resource Planning
F&C Filtering and Collection
FML Filter Markup Language
HAL Hardware Abstraction Layer
HF High Frequency
HTTP HiperText Transfer Protocol
IDE Integrated Development Environment
iPOJO injected POJO
IT Information Technology
JMX Java Management Extensions
LLRP Low Level Reader Protocol
OBR OSGi Bundle Repository
OLCBProc Open Loop Composite Business Process
OSGI Open Service Gateway Initiative
OSS Open Source Software
POJO Plain Old Java Object
RFID Radio Frequency Identification
RP Reader Protocol
SME Small and Medium Enterprise
SNMP Simple Network Management Protocol
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
TCO Total Cost of Ownership
TCP Transfer Control Protocol
UHF Ultra High Frequency
UML Universal Markup Language
WADL Wired Application Description Language
WMS Warehouse Management System

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 81/102

WP Work Package
WSDL Web Services Description Language
XML Extensible Markup Language
XPDL XML Process Definition Language
YAWL Yet Another Workflow Language

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 82/102

Section 11 List of Figures

Figure 1 Simple Ordering Process [68] .. 15
Figure 2 Business Process modeled with an activity diagram [55] .. 24
Figure 3 YAWL control-flow concepts .. 27
Figure 4 APEL Metamodel [63] .. 28
Figure 5 An APEL Control model [63]... 28
Figure 6 : Snapshot of Enhydra JaWE screen. .. 30
Figure 7 Use of JaWE .. 30
Figure 8 Screenshot of Bonita’s Web Console .. 31
Figure 9 Screenshot of Eclipse JWT .. 32
Figure 10 Screenshot of YAPROC .. 33
Figure 11 Screenshot of a process being edited in FOCAS .. 34
Figure 12 Composite/Elementary Business Process relationship/hierarchy 36
Figure 13 Programmable Meta-Language Data Support requirements. 37
Figure 14 Middle Middleware configuration using APDL [10] 40
Figure 15 Decomposing an Inter-enterprise Business process 42
Figure 16 APDL’s Schema graphical representation ... 45
Figure 17 APDL’ Schema design decomposition: OLCBProc .. 46
Figure 18 APDL’ Schema design decomposition: CLCBProc ... 47
Figure 19 APDL’ Schema design decomposition: EBProc ... 48
Figure 20 BPWME Designer Editor View ... 63
Figure 21 CLCBProc’s available Logical Readers Editing ... 64
Figure 22 CLCBProc’s Advanced Logical Readers configuration Editing 65
Figure 23 EBProc’s ECSpec Configuration .. 66
Figure 24 CLCBProc BizLocation & EBProc MasterData Editing 67
Figure 25 CLCBProc BizLocation & Standard Vocabulary (BizStep) Editing 67
Figure 26 BPWME’s created APDL XML file preview ... 68
Figure 27 Programmable Engine ... 69
Figure 28 AspireRFID Architecture .. 71
Figure 29 Acme computer parts Delivery ... 77
Figure 30 And Split Pattern [68] ... 97
Figure 31 Example of Arbitrary Cycles, Source: (Aalst, Mulyar, Russell, & Arthur, 2006) 99

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 83/102

Section 12 List of Tables

Table 1 Business Process Diagram Primary Elements .. 23
Table 2 Event fields with Event Types mapping (Master Data) [13][9] 43
Table 3 ECReports name and Event Binding being used at the ECSpec Definition 43
Table 4 Namespaces used in APDL. ... 44
Table 5 OLCBProc element ... 49
Table 6 CLCBProc element .. 50
Table 7 EBProc element .. 52
Table 8 TransitionRestrictions element .. 53
Table 9 ExtendedAttributes element .. 54
Table 10 ExtendedAttribute element .. 55
Table 11 DataFields element ... 55
Table 12 DataField element description ... 57
Table 13 EPCIS Vocabulary Types .. 58
Table 14 EPCISMasterDataDocument element ... 58
Table 15 Business Transaction Attributes .. 59
Table 16 ECSpec element ... 59
Table 17 LRSpec element .. 59
Table 18 XPDL Transitions element ... 60
Table 19 XPDL Transition element .. 61
Table 20 Description element ... 62
Table 21 Description element description .. 62
Table 22 CLCBProc Element ... 72
Table 23 AcmeWarehouse3Ship EBProc .. 73
Table 24 ECSpec DataField ... 75
Table 25 LRSpec DataField ... 75
Table 26 Master Data (Specifying a Transaction Event) .. 76
Table 27 EPCISMasterDataDocument DataField .. 77
Table 28 ACME’s Complete APDL Solution XML .. 94
Table 29 APDL schema ... 96

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 84/102

Section 13 References and bibliography

[1] V. Stanford, ‘Pervasive Computing Goes to Work: Interfacing to the Enterprise’, IEEE
Pervasive Computing, Vol. 1, No. 3, pp.6-12, July 2002.

[2] George Lawton, “Machine-to-Machine Technology Gears Up for Growth”, IEEE
Computer Vol. 37, Issue. 9, pp.12-15, September 2004.

[3] International Telecommunication Union, “The Internet of Things, Executive Summary”
ITU Internet Reports 2005, November 2005, (electronically available at:
http://www.itu.int/osg/spu/publications/internetofthings/InternetofThings_summary.pdf
)

[4] Christian Floerkemeier, Christof Roduner, and Matthias Lampe, ‘RFID Application
Development with the Accada Middleware Platform’, IEEE Systems Journal, Vol. 1,
Issue 2, pp.82-94, December 2007.

[5] S. Prabhu, Xiaoyong Su, Harish Ramamurthy, Chi-Cheng Chu, Rajit Gadh, “WinRFID
–A Middleware for the enablement of Radio Frequency Identification (RFID) based
Applications”, Invited chapter in Mobile, Wireless and Sensor Networks: Technology,
Applications and Future Directions, Rajeev Shorey, Chan Mun Choon, Ooi Wei
Tsang, A. Ananda (eds.), John Wiley, available at:
http://www.wireless.ucla.edu/rfid/winrfid/.

[6] S. Sarma, “Integrating RFID,” ACM Queue, vol. 2, no. 7, pp. 50–57, 2004.
[7] Nikos Kefalakis, Nektarios Leontiadis, John Soldatos, Didier Donsez, “Middleware

Building Blocks for Architecting RFID Systems”, MOBILIGHT 2009, pp. 325-336.
[8] EPCglobal, “The Application Level Events (ALE) Specification, Version 1.1”,

February. 2008, available at: http://www.epcglobalinc.org/standards/ale
[9] EPC Information Services (EPCIS) Specification, Version 1.0.1, September 21, 2007

available at: http://www.epcglobalinc.org/standards/epcis/
[10] EPCglobal, The EPCglobal Architecture Framework Version 1.3, available

online at http://www.epcglobalinc.org/standards/architecture/
[11] EPCglobal standards, http://www.epcglobalinc.org/standards
[12] Russell Scherwin and Jake Freivald, Reusable Adapters: The Foundation of

Service-Oriented Architecture, 2005.
[13] BEAWebLogic RFID Enterprise Server™, “Understanding the Event, Master

Data, and Data Exchange Services”, Version 2.0, Revised: October 12, 2006.
[14] Panos Dimitropoulos and John Soldatos, ‘RFID-enabled Fully Automated

Warehouse Management: Adding the Business Context’, submitted to the
International Journal of Manufacturing Technology and Management (IJMTM),
Special Issue on: "AIT-driven Manufacturing and Management".

[15] Architecture Review Committee, “The EPCglobal Architecture Framework,”
EPCglobal, July 2005, available at: http://www.epcglobalinc.org.

[16] Achilleas Anagnostopoulos, John Soldatos and Sotiris G. Michalakos,
‘REFiLL: A Lightweight Programmable Middleware Platform for Cost Effective RFID
Application Development’, accepted for publication to the Journal of Pervasive and
Mobile Computing (Elsevier).

[17] Benita M. Beamon, “Supply chain design and analysis: Models and methods”,
International Journal of Production Economics, Vol. 55 pp. 281-294, 1998

[18] Zhekun Li, Rajit Gadh, and B. S. Prabhu, "Applications of RFID Technology
and Smart Parts in Manufacturing", Proceedings of DETC04: ASME 2004 Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference September 28-October 2, 2004, Salt Lake City, Utah USA.

[19] "Business Process Modelling FAQ". http://www.BPModeling.com/faq/.
Retrieved on 2008-11-02.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 85/102

[20] "BPMN FAQ". http://www.BPMNforum.com/FAQ.htm. Retrieved on 2008-11-
02.

[21] Thomas Dufresne & James Martin (2003). "Process Modeling for E-Business".
INFS 770 Methods for Information Systems Engineering: Knowledge Management
and E-Business. Spring 2003

[22] Williams, S. (1967) "Business Process Modeling Improves Administrative
Control," In: Automation. December, 1967, pp. 44 - 50.

[23] BPMMaturity.com
[24] ITWire. “IDS Scheer Launches in Australia.” July 5, 2007.
[25] Asbjørn Rolstadås (1995). "Business process modeling and reengineering".

in: Performance Management: A Business Process Benchmarking Approach. p. 148-
150.

[26] Brian C. Warboys (1994). Software Process Technology: Third European
Workshop EWSPT'94, Villard de Lans, France, February 7-9, 1994 : Proceedings. p.
252.

[27] The Business Model Ontology - A Proposition In A Design Science Approach,
Thesis by Alexander Osterwalder, 2004

[28] See e.g., ISO 12052:2006, [1]
[29] Workflow/Business Process Management (BPM) Service Pattern June 27,

2007. Accessed 29 nov 2008.
[30] FEA (2005) FEA Records Management Profile, Version 1.0. December 15,

2005.
[31] FEA Consolidated Reference Model Document. May 2005.
[32] Paul R. Smith & Richard Sarfaty (1993). Creating a strategic plan for

configuration management using Computer Aided Software Engineering (CASE)
tools. Paper For 1993 National DOE/Contractors and Facilities CAD/CAE User's
Group.

[33] Business Process Reengineering Assessment Guide, United States General
Accounting Office, May 1997.

[34] Wil M.P. van der Aalst, "Business Process Management Demystified: A
Tutorial on Models, Systems and Standards for Workflow Management", Springer
Lecture Notes in Computer Science, Vol 3098/2004.

[35] Wil M.P. van der Aalst, "Patterns and XPDL: A Critical Evaluation of the XML
Process Definition Language", Eindhoven University of Technology, PDF.

[36] Jiang Ping, Q. Mair, J. Newman, "Using UML to design distributed
collaborative workflows: from UML to XPDL", Twelfth IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises, 2003. WET
ICE 2003. Proceedings, ISBN 0-7695-1963-6.

[37] W.M.P. van der Aalst, "Don't go with the flow: Web services composition
standards exposed", IEEE Intelligent Systems, Jan/Feb 2003.

[38] Jürgen Jung, "Mapping Business Process Models to Workflow Schemata An
Example Using Memo-ORGML And XPDL", Universität Koblenz-Landau, April 2004,
PDF.

[39] Volker Gruhn, Ralf Laue, "Using Timed Model Checking for Verifying
Workflows", José Cordeiro and Joaquim Filipe (Eds.): Proceedings of the 2nd
Workshop on Computer Supported Activity Coordination, Miami, USA, 23.05.2005 -
24.05.2005, 75-88. INSTICC Press ISBN 972-8865-26-0.

[40] Nicolas Guelfi, Amel Mammar, "A formal framework to generate XPDL
specifications from UML activity diagrams", Proceedings of the 2006 ACM
symposium on Applied computing, 2006.

[41] Peter Hrastnik, "Execution of business processes based on web services",
International Journal of Electronic Business, Volume 2, Number 5 / 2004.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 86/102

[42] Petr Matousek, "An ASM Specication of the XPDL Language Semantics",
Symposium on the Effectiveness of Logic in Computer Science, March 2002, PS.

[43] F. Puente, A. Rivero, J.D. Sandoval, P. Hernández, and C.J. Molina,
"Improved Workflow Management System based on XPDL", Editor(s): M. Boumedine,
S. Ranka, Proceedings of the The IASTED Conference on Knowledge Sharing and
Collaborative Engineering, St. Thomas, US Virgin Islands, November 29-December
1, 2006, ISBN 0-88986-433-0.

[44] Petr Matousek, "Verification method proposal for business processes and
workflows specified using the XPDL standard language", PhD thesis, Jan 2003.

[45] Albert Rainer (2004). "Web-centric business process modelling". International
Journal of Electronic Business 2 (5).

[46] Y Xiao, D Chen, M Chen (2004). "Research of Web Services Workflow and its
Key Technology Based on XPDL". Proc. 2004 IEEE International Conference on
Systems, Man and Cybernetics 3: Pages 2137–2142.
doi:10.1109/ICSMC.2004.1400643. ISBN 0-7803-8566-7.

[47] Stefan Jablonski (2005). "Processes, Workflows, Web Service Flows: A
Reconstruction". Data management in a connected world: essays dedicated to
Hartmut Wedekind on the occasion of his 70th Birthday (Lecture Notes in Computer
Science). Berlin: Springer. doi:10.1007/11499923_11. ISBN 3540262954.

[48] Thomas Hornung, Agnes Koschmider, Jan Mendling, "Integration of
Heterogeneous BPM Schemas: The Case of XPDL and BPEL", Technical Report JM-
2005-03, Vienna University of Economics and Business Administration, 2006 PDF.

[49] Wei Ge, Baoyan Song, Derong Shen, Ge Yu, "e_SWDL: An XML Based
Workflow Definition Language for Complicated Applications in Web Environments"
Web Technologies and Applications: 5th Asia-Pacific Web Conference, APWeb 2003,
Xian, China, April 23-25, 2003. Proceedings, ISSN 0302-9743.

[50] Workflow Management Coalition Workflow Standard, “Workflow Process
Definition Interface -- XML Process Definition Language V1.0”, Document Number
WFMC-TC-1025, October 25, 2002

[51] Business Processes Modeling Forum: http://www.bpmodeling.com
[52] Minoli Daniel, “Enterprise Architecture A to Z: Frameworks, Business Process

Modeling, SOA, and Infrastructure Technology”, CRC Press, 2008.
[53] Business Process Definition Metamodel: http://en.wikipedia.org/wiki/BPDM
[54] Scott W. Ambler, “Agile Model Driven Development with UML 2”, the object

primer 3rd Edition, Cambridge University Press, 2004.
[55] Scott W. Ambler, “The Elements of UML 2.0 Style”, Cambridge University

Press, 2005.
[56] Business Process Execution Language: http://en.wikipedia.org/wiki/BPEL
[57] XPDL Support and Resources: http://www.wfmc.org/xpdl.html
[58] Wil M.P. Van der Aalst, “Patterns and XPDL: A Critical Evaluation of the XML

Process Definition Language”, BPM Center Report, 2003.
[59] Yet Another Workflow Language: http://en.wikipedia.org/wiki/YAWL
[60] Wil M.P. Van der Aalst, M. Adams, A.H.M. ter Hofstede, M. Pesic, and H.

Schonenberg, “Flexibility as a Service”, BPM Center Report, 2008.
[61] Aalst, W. M., Mulyar, S., Russell, N., & Arthur, H. (2006). WORKFLOW

CONTROL-FLOW PATTERNS - A Revised View.
[62] Aalst, W. v., Hofstede, A. t., Kiepuszewski, B., & Barros, A. (2003). Workflow

patterns. Distributed and Parallel Databases , 5-51.
[63] Dauten, D. (1996). The Max Strategy: How a businessman got stuck at an

airport and learned to make his career take off. New York: William Morrow and
Company.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 87/102

[64] Davenport, T. (1993). Process Innovation: Reengineering work through
information technology. Boston: Harvard Business School Press.

[65] Jeston, J., & Nelis, J. (2008). Business Process Management: Practical
Guidelines to Successful Implementation. Elsevier Ltd.

[66] Smith, H., & Fingar, P. (2003). Business Process Management the third wave.
Tampa: Meghan-Kniffer Press.

[67] Voss, C., & Huxham, C. (2004). Problems, Dilemmas and Promising
Practices. Proceedings of the 11th Annual, (pp. 309-318).

[68] Weske, M. (2007). Business Process Management: Concepts, Languages,
Architectures. Springer.

[69] White, S. A. (2004, March). Process Modeling Notations. BPTrends .
[70] Zullighoven, H., & Riehle, D. (1996). Understanding and Using Patterns in

Software Development. Theory and Practice of Object Systems , 3-13.
[71] Lombardi. (2008). Retrieved July 23, 2009, from Lombardi_getting started with

BPM: www.lombardi.com
[72] Estublier, J., Dami, S., Amiour, M.: APEL: A graphical yet executable

formalism for process modeling. Automated Software Engineering: An International
Journal 5(1) (1998) 61–96

[73] Pedraza, G., Dieng, I., Estublier: J. Multi-concerns Composition for a Process
Support Framework. 1st European Workshop in Model-Driven Tool & Process
Integration, Berlin, Germany, 2008

[74] Ward, M.: Language-Oriented Programming. Software - Concepts and Tools,
pp. 147-161, 1994

[75] Mernik, M., Heering, J., and Sloane, A. M. 2005. When and how to develop
domain-specific languages. ACM Comput. Surv. 37, 4 (Dec. 2005), 316-344

[76] B. Griswold, E. Hilsdale, J. Hugunin, W. Isberg, G. Kiczales, M. Kersten.
"Aspect-Oriented Programming with AspectJ". Available on http://aspectJ.org[LH95]
C. V. Lopes, W. L. Hursch, “Separation of Concerns”, College of Computer Science,
Northeastern University, Boston, February 1995

[77] [Kic92] G. Kiczales. "Towards a New Model of Abstraction in the Engineering
of Software". In Proceedings of IMSA'92. Workshop on Refection and Meta-Level
Architecture, 1992.

[78] [OI94] H. Okamura, Y. Ishikawa. "Object Location Control Using Meta-level
Programming". In Proceedings of the 8th European Conference on Object-Oriented
Programming (ECOOP'94), pages 299-319, Lecture Notes in Computer Science Vol.
821, Springer-Verlag, Bologa, Italy, July 1994.

[79] [ABS+94] M. Aksit, J. Bosch, W. van der Sterren, L. Bergmans. "Real-Time
Specification Inheritance Anomalies and Real-Time Filters". In Proceedings of the 8th
European Conference on Object-Oriented Programming (ECOOP'94), Lecture Notes
in Computer Science, Vol. 821, pages 386-407, Springer-Verlag, Bologa, Italy, July
1994.

[80] John Soldatos, Nikos Kefalakis, Nektarios Leontiadis, et. al., “Programmable
Filters – FML Specification”, ASPIRE Project Public Deliverable D4.3b, Semptember
2009, publicly available at:
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/Deliverables

[81] The AspireRfid project, http://forge.objectweb.org/projects/aspire/ (forge),
http://wiki.aspire.objectweb.org/xwiki/bin/view/Main/WebHome (wiki)

[82] Nikos Kefalakis, John Soldatos, Yongming Luo, et. al., “ASPIRE
Programmable Engine (APE) (Interim Version)”, ASPIRE Project Public Deliverable
D4.2a, December 2009, publicly available at:
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/Deliverables

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 88/102

[83] Nikos Kefalakis, John Soldatos, Nikolaos Konstantinou and Neeli R. Prasad
“APDL: An XML-based Language for Integrated RFID Solutions”, Submitted to the
Journal of Systems and Software (Elsevier), May 2010

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 89/102

APPENDIXES

APPENDIX I. ACME’s Complete APDL Solution XML

<?xml version="1.0" encoding="UTF-8"?>

 <!--
 Copyright © 2008-2010, Aspire Aspire is free software; you can redistribute
 it and/or modify it under the terms of the GNU Lesser General Public License
 version 2.1 as published by the Free Software Foundation (the "LGPL"). You
 should have received a copy of the GNU Lesser General Public License along
 with this library in the file COPYING-LGPL-2.1; if not, write to the Free
 Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 02110-1301 USA. This software is distributed on an "AS IS" basis, WITHOUT
 WARRANTY OF ANY KIND, either express or implied. See the GNU Lesser General
 Public License for the specific language governing rights and limitations.
 Author: Nikos Kefalakis (nkef@ait.edu.gr)
 -->

<apdl:OLCBProc id="urn:epcglobal:fmcg:bti:openloopsupplychain"
 name="AcmeSupplyChainManagement" xmlns:ale="urn:epcglobal:ale:xsd:1"
 xmlns:alelr="urn:epcglobal:alelr:xsd:1" xmlns:apdl="urn:ow2:aspirerfid:apdlspec:xsd:1"
 xmlns:epcglobal="urn:epcglobal:xsd:1" xmlns:epcis="urn:epcglobal:epcis:xsd:1"
 xmlns:epcismd="urn:epcglobal:epcis-masterdata:xsd:1"
 xmlns:p="http://www.unece.org/cefact/namespaces/StandardBusinessDocumentHeader"
 xmlns:xpdl=http://www.wfmc.org/2002/XPDL1.0
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:ow2:aspirerfid:apdlspec:xsd:1
 ../aspireRfidSpecificationLanguage/AspireSpesificationLanguage.xsd ">

 <epcismd:EPCISMasterDataDocument>
 <EPCISBody>
 <VocabularyList>
 <Vocabulary type="urn:epcglobal:epcis:vtype:BusinessStep">
 <VocabularyElementList>
 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:receiving">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="receiving" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:picking">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Picking" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:shipping">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="shipping" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:shipment">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Shipment" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:production">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Production" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:accepting">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Accepting" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:inspecting">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Inspecting" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:storing">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Storing" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:packing">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Packing" />
 </VocabularyElement>

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 90/102

 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:loading">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Loading" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:commissioning">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Commissioning" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:decommissioning">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Decommissioning" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:bizstep:destroying">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Destroying" />
 </VocabularyElement>
 </VocabularyElementList>
 </Vocabulary>

 <Vocabulary type="urn:epcglobal:epcis:vtype:Disposition">
 <VocabularyElementList>
 <VocabularyElement id="urn:epcglobal:fmcg:disp:active">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Active" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:disp:inactive">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Inactive" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:disp:reserved">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Reserved" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:disp:encoded">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Encoded" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:disp:in_transit">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="In_transit" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:disp:non_sellable">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Non_sellable" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:disp:in_progress">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="In_progress" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:disp:sold">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Sold" />
 </VocabularyElement>
 </VocabularyElementList>
 </Vocabulary>

 <Vocabulary type="urn:epcglobal:epcis:vtype:BusinessTransactionType">
 <VocabularyElementList>
 <VocabularyElement id="urn:epcglobal:fmcg:btt:shipping">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Shipping" />
 </VocabularyElement>
 <VocabularyElement id="urn:epcglobal:fmcg:btt:receiving">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Receiving" />
 </VocabularyElement>
 </VocabularyElementList>
 </Vocabulary>
 </VocabularyList>
 </EPCISBody>
 </epcismd:EPCISMasterDataDocument>
 <!--
 Open Loop Composite Business Process (AspireRFID Process Description
 Language Specification)
 -->
 <apdl:CLCBProc id="urn:epcglobal:fmcg:bti:acmesupplying"
 name="AcmeWarehouseBusinessProcess">
 <!--
 RFID Composite Business Process Specification (the ID will be the

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 91/102

 Described Transactions's URI)
 -->
 <xpdl:Description>Acme Supply Chain</xpdl:Description>

 <epcismd:EPCISMasterDataDocument>
 <EPCISBody>
 <VocabularyList>
 <Vocabulary type="urn:epcglobal:epcis:vtype:BusinessLocation">
 <VocabularyElementList>
 <VocabularyElement id="urn:epcglobal:fmcg:loc:greece:pireus:mainacme">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Acme" />
 <attribute id="urn:epcglobal:epcis:mda:Address" value="Akadimias 3" />
 <attribute id="urn:epcglobal:epcis:mda:City" value="Pireus" />
 <attribute id="urn:epcglobal:epcis:mda:Country" value="Greece" />
 </VocabularyElement>

 <VocabularyElement

id="urn:epcglobal:fmcg:loc:greece:pireus:mainacme,urn:epcglobal:fmcg:loc:acme:warehouse1">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="AcmeWarehouse1" />
 <attribute id="urn:epcglobal:epcis:mda:Read Point"
 value="urn:epcglobal:fmcg:loc:rp:45632.Warehouse1DocDoor" />
 </VocabularyElement>

 <VocabularyElement

id="urn:epcglobal:fmcg:loc:greece:pireus:mainacme,urn:epcglobal:fmcg:loc:acme:warehouse2">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="AcmeWarehouse2" />
 <attribute id="urn:epcglobal:epcis:mda:Read Point"
 value="urn:epcglobal:fmcg:loc:rp:06141.Warehouse2DocDoor" />
 </VocabularyElement>

 <VocabularyElement

id="urn:epcglobal:fmcg:loc:greece:pireus:mainacme,urn:epcglobal:fmcg:loc:acme:warehouse3">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="AcmeWarehouse3" />
 <attribute id="urn:epcglobal:epcis:mda:Read Point"
 value="urn:epcglobal:fmcg:loc:rp:56712.Warehouse3Docdoor" />
 </VocabularyElement>
 </VocabularyElementList>
 </Vocabulary>

 <Vocabulary type="urn:epcglobal:epcis:vtype:ReadPoint">
 <VocabularyElementList>
 <VocabularyElement
 id="urn:epcglobal:fmcg:loc:rp:45632.Warehouse1DocDoor">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Warehouse1DocDoor" />
 </VocabularyElement>

 <VocabularyElement
 id="urn:epcglobal:fmcg:loc:rp:06141.Warehouse2DocDoor">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Warehouse2DocDoor" />
 </VocabularyElement>

 <VocabularyElement
 id="urn:epcglobal:fmcg:loc:rp:56712.Warehouse3Docdoor">
 <attribute id="urn:epcglobal:epcis:mda:Name" value="Warehouse3DocDoor" />
 </VocabularyElement>
 </VocabularyElementList>
 </Vocabulary>

 </VocabularyList>
 </EPCISBody>
 </epcismd:EPCISMasterDataDocument>

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 92/102

 <apdl:EBProc id="urn:epcglobal:fmcg:bte:acmewarehouse1receive"
 name="Warehouse1DocDoorReceive">
 <!--
 Elementary RFID Business Process Specification (the ID will be the
 Described Event's URI)
 -->
 <xpdl:Description>Acme Warehouse 3 Receiving ReadPoint5 Gate3
 </xpdl:Description>
 <xpdl:TransitionRestrictions>
 <xpdl:TransitionRestriction>
 <xpdl:Join Type="AND" />
 </xpdl:TransitionRestriction>
 </xpdl:TransitionRestrictions>
 <xpdl:ExtendedAttributes>
 <xpdl:ExtendedAttribute Name="XOffset" Value="204" />
 <xpdl:ExtendedAttribute Name="YOffset" Value="204" />
 <xpdl:ExtendedAttribute Name="CellHeight" Value="30" />
 <xpdl:ExtendedAttribute Name="CellWidth" Value="313" />
 <xpdl:ExtendedAttribute Name="ECSpecSubscriptionURI"
 Value="http://localhost:9999" />
 <xpdl:ExtendedAttribute Name="AleClientEndPoint"
 Value="http://localhost:8080/aspireRfidALE/services/ALEService" />
 <xpdl:ExtendedAttribute Name="AleLrClientEndPoint"
 Value="http://localhost:8080/aspireRfidALE/services/ALELRService" />
 <xpdl:ExtendedAttribute Name="EpcisClientCaptureEndPoint"
 Value="http://localhost:8080/aspireRfidEpcisRepository/capture" />
 <xpdl:ExtendedAttribute Name="EpcisClientQueryEndPoint"
 Value="http://localhost:8080/aspireRfidEpcisRepository/query" />
 <xpdl:ExtendedAttribute Name="BegEngineEndpoint"
 Value="http://localhost:8080/aspireRfidBEG/begengine" />

 <!-- The DefinedECSpecName can be collected from the EBProc id-->
 <!--
 For the BEG configuration the port can be collected from the
 "ECSpecSubscriptionURI" value and the event to serve from the EBPSpec
 id
 -->
 </xpdl:ExtendedAttributes>
 <apdl:DataFields>
 <apdl:DataField type="EPCISMasterDataDocument" name="RecievingMasterData">
 <epcismd:EPCISMasterDataDocument>
 <EPCISBody>
 <VocabularyList>
 <Vocabulary type="urn:epcglobal:epcis:vtype:BusinessTransaction">
 <VocabularyElementList>
 <VocabularyElement
 id="urn:epcglobal:fmcg:bte:acmewarehouse1receive">
 <attribute id="urn:epcglobal:epcis:mda:event_name"
 value="Warehouse1DocDoorReceive" />
 <!--
 For the required ECReportID we will use the EBPSpec id
 and the information for which kind of reports BEG will
 use the event type will provide them.
 -->
 <attribute id="urn:epcglobal:epcis:mda:event_type"
 value="ObjectEvent" />
 <attribute id="urn:epcglobal:epcis:mda:business_step"
 value="urn:epcglobal:fmcg:bizstep:receiving" />
 <attribute id="urn:epcglobal:epcis:mda:business_location"
 value="urn:epcglobal:fmcg:loc:acme:warehouse1" />
 <attribute id="urn:epcglobal:epcis:mda:disposition"
 value="urn:epcglobal:fmcg:disp:in_progress" />
 <attribute id="urn:epcglobal:epcis:mda:read_point"
 value="urn:epcglobal:fmcg:loc:45632.Warehouse1DocDoor" />
 <attribute id="urn:epcglobal:epcis:mda:transaction_type"

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 93/102

 value="urn:epcglobal:fmcg:btt:receiving" />
 <attribute id="urn:epcglobal:epcis:mda:action"
 value="ADD" />
 </VocabularyElement>
 </VocabularyElementList>
 </Vocabulary>
 </VocabularyList>
 </EPCISBody>
 </epcismd:EPCISMasterDataDocument>
 </apdl:DataField>

 <apdl:DataField type="ECSpec" name="RecievingECSpec">
 <ale:ECSpec includeSpecInReports="false">
 <logicalReaders>
 <logicalReader>SmartLabImpinjSpeedwayLogicalReader
 </logicalReader>
 </logicalReaders>
 <boundarySpec>
 <repeatPeriod unit="MS">5500</repeatPeriod>
 <duration unit="MS">5500</duration>
 <stableSetInterval unit="MS">0
 </stableSetInterval>
 </boundarySpec>
 <reportSpecs>
 <!--For the required ECReportID we will use the EBPSpec id -->
 <reportSpec reportOnlyOnChange="false" reportName="bizTransactionIDs"
 reportIfEmpty="true">
 <reportSet set="CURRENT" />
 <filterSpec>
 <includePatterns>
 <includePattern>urn:epc:pat:gid-96:145.12.*
 </includePattern>
 <includePattern>urn:epc:pat:gid-96:239.30.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
 </reportSpec>
 <!--For the required ECReportID we will use the EBPSpec id-->
 <reportSpec reportOnlyOnChange="false" reportName="transactionItems"
 reportIfEmpty="true">
 <reportSet set="ADDITIONS" />
 <filterSpec>
 <includePatterns>
 <includePattern>urn:epc:pat:gid-96:145.233.*
 </includePattern>
 <includePattern>urn:epc:pat:gid-96:145.255.*
 </includePattern>
 <includePattern>urn:epc:pat:gid-96:1.4.*
 </includePattern>
 <includePattern>urn:epc:pat:gid-96:1.3.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
 </reportSpec>
 </reportSpecs>
 <extension />
 </ale:ECSpec>

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 94/102

 </apdl:DataField>
 <!--
 We could have many LRSpecs defining many Logical Readers for one
 EBProc
 -->
 <apdl:DataField type="LRSpec"
 name="SmartLabImpinjSpeedwayLogicalReader">
 <alelr:LRSpec>
 <isComposite>false</isComposite>
 <readers />
 <properties>
 <property>
 <name>Description</name>
 <value>This Logical Reader consists of read point 1,2,3
 </value>
 </property>
 <property>
 <name>ConnectionPointAddress</name>
 <value>192.168.212.238</value>
 </property>
 <property>
 <name>ConnectionPointPort</name>
 <value>5084</value>
 </property>
 <property>
 <name>ReadTimeInterval</name>
 <value>4000</value>
 </property>
 <property>
 <name>PhysicalReaderSource</name>
 <value>1,2,3</value>
 </property>
 <property>
 <name>RoSpecID</name>
 <value>1</value>
 </property>
 <property>
 <name>ReaderType</name>
 <value>org.ow2.aspirerfid.ale.server.readers.llrp.LLRPAdaptor
 </value>
 </property>
 </properties>
 </alelr:LRSpec>
 </apdl:DataField>
 </apdl:DataFields>
 </apdl:EBProc>
 <xpdl:Transitions>
 <xpdl:Transition Id="Start_Warehouse3RecievingGate3" Name="Start_Warehouse3RecievingGate3"
 From="CLCBProcStart" To="urn:epcglobal:fmcg:bte:acmewarehouse3ship" />
 <xpdl:Transition Id="Warehouse3RecievingGate3_End" Name="Warehouse3RecievingGate3_End"
 From="urn:epcglobal:fmcg:bte:acmewarehouse3ship" To="CLCBProcEnd" />
 </xpdl:Transitions>
 </apdl:CLCBProc>

</apdl:OLCBProc>

Table 28 ACME’s Complete APDL Solution XML

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 95/102

APPENDIX II. APDL Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" targetNamespace="urn:ow2:aspirerfid:apdlspec:xsd:1"
 xmlns:ale="urn:epcglobal:ale:xsd:1" xmlns:alelr="urn:epcglobal:alelr:xsd:1"
 xmlns:apdl="urn:ow2:aspirerfid:apdlspec:xsd:1"
 xmlns:epcismd="urn:epcglobal:epcis-masterdata:xsd:1"
 xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0">

 <!--
 Copyright © 2008-2010, Aspire Aspire is free software; you can
 redistribute it and/or modify it under the terms of the GNU Lesser General
 Public License version 2.1 as published by the Free Software Foundation
 (the "LGPL"). You should have received a copy of the GNU Lesser General
 Public License along with this library in the file COPYING-LGPL-2.1; if
 not, write to the Free Software Foundation, Inc., 51 Franklin Street,
 Fifth Floor, Boston, MA 02110-1301 USA. This software is distributed on an
 "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.
 See the GNU Lesser General Public License for the specific language
 governing rights and limitations.
 -->
 <!--
 Author: Nikos Kefalakis (nkef@ait.edu.gr)
 -->

 <xs:import namespace="urn:epcglobal:alelr:xsd:1"
 schemaLocation="resources/epcglobal/EPCglobal-ale-1_1-alelr.xsd"></xs:import>
 <xs:import namespace="urn:epcglobal:ale:xsd:1"
 schemaLocation="resources/epcglobal/EPCglobal-ale-1_1-ale.xsd"></xs:import>
 <xs:import namespace="urn:epcglobal:epcis-masterdata:xsd:1"
 schemaLocation="resources/epcglobal/EPCglobal-epcis-masterdata-1_0.xsd">
 </xs:import>
 <xs:import namespace="http://www.wfmc.org/2002/XPDL1.0"
 schemaLocation="resources/XPDL.xsd"></xs:import>
 <xs:element name="OLCBProc" type="apdl:OLCBProc" />
 <xs:element name="CLCBProc" type="apdl:CLCBProc" />
 <xs:element name="EBProc" type="apdl:EBProc" />

 <xs:complexType name="OLCBProc">
 <xs:sequence>
 <!--
 At this level the "epcismd:EPCISMasterDataDocument" is used to store
 only Standard Vocabulary types and more specifically the
 "urn:epcglobal:epcis:vtype:BusinessStep", the
 "urn:epcglobal:epcis:vtype:Disposition" and the
 "urn:epcglobal:epcis:vtype:BusinessTransactionType" types.
 -->
 <xs:element minOccurs="0" maxOccurs="1"
 ref="epcismd:EPCISMasterDataDocument" />
 <xs:element maxOccurs="unbounded" ref="apdl:CLCBProc" />
 <xs:element ref="xpdl:Transitions" />
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:anyURI" />
 <xs:attribute name="name" use="required" type="xs:NCName" />

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 96/102

 </xs:complexType>

 <xs:complexType name="CLCBProc">
 <xs:sequence>
 <xs:element ref="xpdl:Description" />
 <xs:element maxOccurs="unbounded" ref="apdl:EBProc" />
 <!--
 At this level the "epcismd:EPCISMasterDataDocument" is used to store
 only User Vocabulary types and more specifically the
 "urn:epcglobal:epcis:vtype:BusinessLocation" and the
 "urn:epcglobal:epcis:vtype:ReadPoint" types.
 -->
 <xs:element minOccurs="0" maxOccurs="1"
 ref="epcismd:EPCISMasterDataDocument" />
 <xs:element ref="xpdl:Transitions" />
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:anyURI" />
 <xs:attribute name="name" use="required" type="xs:NCName" />
 </xs:complexType>

 <xs:complexType name="EBProc">
 <xs:sequence>
 <xs:element ref="xpdl:Description" />
 <xs:element ref="xpdl:TransitionRestrictions" />
 <xs:element ref="xpdl:ExtendedAttributes" />
 <xs:element ref="apdl:DataFields" />
 </xs:sequence>
 <xs:attribute name="id" type="xs:anyURI" />
 <xs:attribute name="name" type="xs:NCName" />
 </xs:complexType>

 <xs:element name="DataFields">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="3" maxOccurs="unbounded" ref="apdl:DataField" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="DataField">
 <xs:complexType>
 <xs:choice>
 <xs:element maxOccurs="1" ref="ale:ECSpec" />
 <xs:element maxOccurs="1" ref="epcismd:EPCISMasterDataDocument" />
 <xs:element maxOccurs="1" ref="alelr:LRSpec" />
 </xs:choice>
 <xs:attribute name="name" use="required" type="xs:NCName" />
 <xs:attribute name="type" use="required" type="xs:NCName" />
 </xs:complexType>
 </xs:element>

</xs:schema>

Table 29 APDL schema

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 97/102

APPENDIX III. Control-Flow Perspective of Workflow Systems Patterns

I. Basic Control Flow Patterns

This class of patterns captures elementary aspects of process control. Basic
control flow patterns include Sequence, Parallel Split, Synchronization, Exclusive
Choice, and Simple Merge.

1. Sequence pattern
Description: An activity in a workflow process is enabled after the completion of
a preceding activity in the same process.

Example: An activity print-receipt is executed after the execution of activity
issue-ticket.

2. Parallel Split (AND-Split)
Description: A point in the process model where a single thread of control splits
into multiple threads of control which are executed concurrently.

Example: When a temperature-alert-high is received, trigger the
reduce_to_desire_temprature activity and the inform_admin activity
immediately.

Figure 30 And Split Pattern [68]

3. Synchronization (AND-Join)

Description: is a point in the process model where multiple concurrent
threads(executed in any order or in parallel) are converge into one single thread;
do not proceed with the execution of the following activities until all these
preceding activities have completed.

Example: The ship-goods activity runs immediately after both the pack-goods
and produce_dispatch_list activities are completed.

4. Exclusive Choice (XOR-SPLIT)
Description: an XOR split or exclusive or split is a point in a process model where
precisely one of the several branches available is chosen based on the outcome
of a logical expression associated with the branch.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 98/102

Example: After the review election activity is complete, either the declare results
or the recount votes activity is undertaken.

5. Simple Merge (XOR-Join)
Description: A point in the work flow process where two or more alternative
branches come together without synchronization. In other words the merge will
be triggered once any of the incoming transitions are executed.
Example: Activity archive_claim is enabled after either pay_damage or
contact_customer is executed.

II. Advanced Branching and Synchronization Patterns

This section outlines a series of patterns that have more complex branching and
merging concepts which arise in business processes.

6. Multi Choice (Or split)
Description: a point in a process model where, based on the outcome of distinct
logical expressions associated with each of the branches, one or more branches
are chosen.

Example: Depending on the nature of the emergency call, one or more of the
despatch-police, despatch-fire-engine and despatch-ambulance activities is
initiated.

7. Synchronizing merge (Or Join)
Description: A point in a process model where multiple paths converge into one
single thread. Synchronize needs to take place if more than one path is taken.
Whereas if only one path is taken the alternative branches should reconverge
without synchronization.

Example: Continuing example above. Once all the emergency vehicles arrive at
the accident, the transfer- patient activity starts.

8. Multiple Merge
Description: A multi merge is a point in a process model where two or more
concurrent threads join without synchronization. If more than one branch gets
activated, possibly concurrently, the activity following the merge is started only
once for every incoming branch that gets activated.

Example: A simple example of this would be two activities audit application and
process application running in parallel which should both be followed by an
activity close case.

9. Discriminator
Description: a point in a process model that waits for one of the incoming
branches to complete before activating the subsequent activity. From that
moment on it waits for all remaining branches to complete and “ignores” them.
Once all incoming branches have been triggered, it resets itself so that it can be
triggered again. This allows a discriminator to be used in the context of a loop.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 99/102

The importance of gathering the ignored branch as part of the functional
behaviour of the discriminator pattern is that without it there would be no way to
distinguish a second iteration of a loop from a late branch of its first iteration.

Example: A paper needs to be sent to external reviewers. The paper is accepted
if both reviews are positive. But if the first review that arrives is negative, the
author(s) should be notified without having to wait for the second review.

10.N-out-of-M-Join
Description: Is a point in a process model where M parallel paths converge into
one. The subsequent activity is activated once N paths have completed;
completion of all remaining parts should be ignored. Similar to the discriminator,
once all incoming branches have triggered, the join resets itself so that it can be
performed again.

Example: A request of quotation process, in which quotations are invited from
five companies. Upon receiving three quotations the quotation process can be
processed. The last two quotations can be ignored.

III. Structural Patterns

In this section two patterns are presented which illustrate typical restrictions
imposed on work flow specifications.

11.Arbitrary Cycles
Description: The ability to represent cycles in a process model that have more
than one entry or exit point. I.e. does not impose any structural restrictions on
the types of loops that can exist in the process model.

Example: Figure below provides an illustration of the pattern with two entry
points: p3 and p4.

Figure 31 Example of Arbitrary Cycles, Source: (Aalst, Mulyar, Russell, & Arthur, 2006)

12.Implicit Terminations

Description: A given process instance should terminate when there are no
remaining work items that are able to be done either now or at any time in the

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 100/102

future. Unlike other control flow patterns, role of implicit termination pattern is
different. It does not relate activity instances with one another instead it
represents a termination condition of an overall process. Usually termination is
explicit in process languages because there is exactly one state in the process
that marks it termination. If there are many states then termination is implicit
[58].

IV. Patterns with multiple instances

This section outlines patterns with multiple instances. These multiple instance
patterns describe situations where one activity in a process model can have more
than one running, active instance at the same time.

13.Multiple Instances without Synchronization
Description: Generates multiple instances of an activity without the need to
synchronise these activity instances afterwards.

Example: An order list is received which contains a number of order lines. For
each order line a check activity needs to be executed. These activities are run to
completion concurrently and do not trigger any subsequent activity. And do not
require synchronization at completion.

14.Multiple Instances with Priori Design Time Knowledge
Description: Within a given process instance, multiple instances of an activity are
generated with the number of activity instances of the activity model known at
design time. While these instances are independent and running concurrently,
they have to be synchronized at completion for subsequent activity to be
triggered.

Example: An annual report has to be signed by all 6 directors before being
published.

15.Multiple Instances with Priori Run Time Knowledge
Description: Within a given process instance, multiple instances of an activity are
generated. The required number of instances varies and depends on
characteristics of the case, resource availability, and inter-process
communications, but is known before activity instance has to be created. While
these instances are independent and running concurrently, they have to be
synchronized at completion for subsequent activity to be triggered.

Example: While processing an order for multiple books, the activity check
availability is executed for each individual book.

16.Multiple Instances without Priori Run Time Knowledge
Description: Within a given process instance, multiple instances of an activity are
generated. The required number of instances varies and depends on a number of
run time factors; resource availability and inter-process communications, but is
known until the final activity instance has completed. At any time, whilst
instances are running, it is possible for additional instances to be initiated. While

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 101/102

these instances are independent and running concurrently, they have to be
synchronized at completion for subsequent activity to be triggered.

Example: The requisition of 30 computers involves an unknown number of
deliveries since the number of computers per delivery is unknown. Once each
delivery is processed, it can be determined whether next delivery is to come by
taking the difference between goods requested and goods delivered.

V. State based patterns

This section illustrates patterns that capture the implicit behaviour of processes
based not on the current case but on the environment or other parts of the
processes. In this context, the state of a process instance includes the broad
collection of data associated with current execution including the status of
various activities as well as process-relevant working data such as activity and
case data elements

17.Deferred Choice
Description: A point in the process model where one of several branches is
chosen. Unlike the XOR-split, where the choice is made explicitly (e.g. based on
data or a decision) instead several alternatives are offered to the environment.
However, once the environment activates one of the branches the other
alternative branches are withdrawn. It is important to note that the choice is
delayed until the processing in one of the alternative branches is actually started,
therefore the moment of choice is deferred to a point in time that is as late as
possible.

Example: Upon receiving the products there are two ways to transport the
products to the department. The selection is based on the availability of the
corresponding resources. Therefore, the choice is deferred until a resource is
available.

18.Interleaved Parallel Routing
Description: Execute a number of activities in any order (e.g. based on
availability of resources), the order is decided at run time, and does not execute
any of these activities at the same time/simultaneously.

Example: A bank performs two activities on each account annually; add interest
and charge credit card costs. These activities can be conducted in any order but
not at the same time since both update the account there can be executed at the
same time.

19.Milestone
Description: an activity is only enabled when the process instance is in a specific
state. For instance, enable a certain activity at any time before the milestone is
reached, after which the activity can no longer be executed.

Example: a budget travel agent allows routing of bookings to be changed as long
as the ticket has not been issued.

Contract: 215417
Deliverable report – WP4 / D4.4b

ID: Aspire-D4.4b_V1.1(ForWiki).doc Date: 19 October 2010
Revision: 1.1 Security: Public
 Page 102/102

VI. Cancellation patterns

In this section two patterns are presented that deal with cancellation of activities
and cases.

20. Cancel activity
Description: An enabled activity is withdrawn if the execution has not started. If
the execution has started, it is disabled and, where possible, the currently
running instance is halted and removed.

Example: The assess damage activity is undertaken by two insurance assessors.
Once the first assessor has completed the activity, the second is cancelled.

21. Cancel Case
Description: Removing a complete process instance. Even if parts of the process
are instantiated multiple times, all descendants are removers while process
instance is recorded as completed unsuccessfully.

Example: A customer withdraws a mortgage application before the final decision
is made because he/she decides not to buy the house anymore.

