
ASPIRE FP7 215417

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the ASPIRE Consortium. Neither

this document nor the information contained herein shall be used, duplicated or
communicated by any means to any third party, in whole or in parts, except with prior written

consent of the ASPIRE consortium.

Collaborative Project

ASPIRE

Advanced Sensors and lightweight Programmable
middleware for Innovative Rfid Enterprise applications

FP7 Contract: ICT-215417-CP

WP4 – RFID Middleware programmability

Public report - Deliverable

Programmable Filters – FML
Specification

Due date of deliverable: M24
Actual Submission date: 16/12/09

Deliverable ID: WP4/D4.3b
Deliverable Title: Programmable Filters – FML Specification
Responsible partner: IT-Ramiro Robles (editor)

Contributors:

John Soldatos (AIT) (main contributor)
Nikos Kefalakis (AIT) (main contributor)
Nektarios Leontiadis (AIT) (main contributor)
Loïc Schmidt (INRIA),
Nathalie Mitton (INRIA)

Estimated Indicative
Person Months: 24

Start Date of the Project: 1 January 2008 Duration: 36 Months

Revision: 0.4b (final)
Dissemination Level: PU

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 2/62

Document Information

Document Name: Programmable Filters – FML Specification (Interim Version)
Document ID: WP4/D4.3b
Revision: 0.4b (final)
Revision Date: 16 December 2009
Author: IT(editor), AIT (main contributor), INRIA (contributor)
Security: PU

Approvals

 Name Organization Date Visa

Coordinator Neeli Rashmi Prasad CTIF-AAU

Technical
Coordinator John Soldatos AIT

Quality Manager Anne Bisgaard Pors CTIF-AAU

Reviewers

Name Organization Date Comments Visa
Nathalie Mitton INRIA

PMs Spend per Partner

Organization PMs Spend Comments

AAU Removed responsibility

INRIA Section 10

AIT

AIT is the main contributor of the work
described within Sections 3, 4, 5, 6, 7, 8

and 9 of the deliverable. AIT has also
implemented and contributed this work to

the AspireRfid project
(http://wiki.aspire.ow2.org/)

IT Editor and reviewer

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 3/62

Document history

Revision Date Modification Authors
a_0.1 20 Mar 09 First draft Nikos Kefalakis

a_0.2 23 Mar 09 Edited Programmable Filters
Specification (creating business logic) Nikos Kefalakis

a_0.3 24 Mar 09 Augmented Executive Summary and
Introduction Ramiro Samano Robles

a_0.4 26 Mar 09 Added Available Tools and the Complete
Example Nikos Kefalakis

a_0.5 01 Apr 09 Conclusion, augmented Introduction Nektarios Leontiadis, John Soldatos

a_0.6 14 Apr 09 Section 3,Section 4, augmented Section
2 Nikos Kefalakis, John Soldatos

a_0.7 15 Apr 09 Added Section 10 Loïc Schmidt, Nathalie Mitton
a_0.8 29 Apr 09 Minor Corrections Nikos Kefalakis
b_0.1 Ramiro Samano Robles

b_0.2 20 Nov 09 Augmented/Corrected Section 4, Par.
6.4, Section 7, Par. 8.3 and Section 9 Nikos Kefalakis

b_0.3 23 Nov 09 Changed Section 1 John Soldatos
b_0.4 12 Dec 09 Editorial modifications. Ramiro Samano Robles

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 4/62

Content

Section 1 Executive Summary .. 6
Section 2 Introduction ... 8

2.1 RFID middleware: motives and functionalities .. 8
2.2 ASPIRE objectives and middleware architecture .. 8
2.3 ASPIRE innovative filtering solution .. 11
2.4 The ASPIRE FML (Filtering Markup Language) ... 12
2.5 Scope and organization of the document .. 12

Section 3 Concept of Reusable filters ... 14
Section 4 Notion of Programmable Filters in the ASPIRE Architecture 17
Section 5 Business Event Generation: Connecting F&C and Information Services
modules through Business Filters ... 19
Section 6 Programmable Filters Specification (the different components) 21

6.1 Overview .. 21
6.2 Filtering and Collection module .. 21

6.2.1 Role .. 21
6.2.2 ECSpecs ... 21

6.2.2.1 ECReportSpec .. 22

6.3 Information Services module .. 23
6.3.1 Role .. 23
6.3.2 Event Data .. 24

6.3.2.1 EPCIS Event ... 24
6.3.2.2 Aggregation Event .. 25
6.3.2.3 Object Event ... 25
6.3.2.4 Quantity Event .. 26
6.3.2.5 Transaction Event ... 27

6.3.3 Actions Types ... 28
6.3.4 Master Data .. 28

6.3.4.1 Master Data Types .. 29
6.3.4.1.1 BusinessTransaction ... 30

6.4 Business Event Generation module ... 30
6.4.1 Role .. 31
6.4.2 Functionality .. 31

Section 7 Programmable Filters Specification (creating business logic) 33
7.1 Overview .. 33
7.2 Combining ECSpecs & BizTransaction Attr to create Event Data 33

7.2.1 Creating an Aggregation Event ... 35
7.2.1.1 Setting up the ECSpec .. 35
7.2.1.2 Processing the ECReport ... 37

7.2.2 Creating an Object Event .. 37

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 5/62

7.2.2.1 Setting up the ECSpec .. 37
7.2.2.2 Processing the ECReport ... 38

7.2.3 Creating a Quantity Event ... 39
7.2.3.1 Setting up the ECSpec .. 39
7.2.3.2 Processing the ECReport ... 40

7.2.4 Creating an Transaction Event ... 40
7.2.4.1 Setting up the ECSpec .. 40
7.2.4.2 Processing the ECReport ... 42

Section 8 Available Tools for Defining Business Filters ... 43
8.1 Overview .. 43
8.2 ECSpec Editor ... 43
8.3 Master Data Editor (MDE)... 44

Section 9 A complete example using Programmable filters ... 48
9.1 Describing the Problem ... 48
9.2 Solution Requirements .. 48
9.3 Setting up the Filtering and collection Module .. 48
9.4 Setting up the Information Services Module .. 51
9.5 Setting up the Business event generation module ... 53
9.6 Process description ... 53

Section 10 Filter using Distributed Hash Table (investigations) 54
Section 11 Conclusions .. 56
Section 12 List of Acronyms .. 57
Section 13 List of Figures ... 59
Section 14 List of Tables ... 60
Section 15 References and Bibliography .. 61

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 6/62

Section 1 Executive Summary

Conventional applications of RFID such as toll payment and access control can be
handled by a relatively simple and unchallenging middleware platform. However,
recent advances in microelectronics and radiofrequency (RF) transceivers have
paved the way for advanced RFID business applications at the item level (such as
inventory control and supply chain management). This, in turn, has created the
need for more complex middleware tools to deal with the huge amount of
generated tag data and with all the particularities of these new RFID
applications.

To fill this gap, the ASPIRE project aims at developing configurable middleware,
tools and techniques for filtering RFID tag streams. This deliverable is devoted
to the specification and implementation of tools and techniques towards
programmable/configurable filtering of RFID tag streams in the scope of
advanced RFID solutions. Filtering of unwanted raw RFID tag data is a crucial
functionality of an RFID middleware platform. However, in ASPIRE the filtering
functionality has been further extended to the context of higher level abstraction
layers. Hence, in this deliverable filtering is mainly concerned with filters that can
automatically create business events and subsequently route RFID information to
the required back-end enterprise applications (such as Enterprise Resource
Planning –ERP- and Warehouse Management Systems –WMS-). These filters
operate typically based on high-level business semantics rather than low-level
filtering rules which process bits and bytes over the RFID tag streams. For such
lower level filtering, ASPIRE relies on the management and configuration of
related EPCGlobal (Electronic Product Code Global) compliant middleware
modules and related specifications (such as EPC Application Level Events (EPC-
ALE) and EC Specifications (ECSpecs)).

In order to make the distinction between low-level and business-level filtering,
this deliverable positions its developments in the scope of the overall ASPIRE
architecture (described in detail in deliverable D2.3b and briefly described in the
introductory section). Furthermore, the present document illustrates the data
structures and constructs that are used towards defining and capturing business
context, given that the business-level filters are defined based on these
constructs. In particular, it is illustrated how business events are used to capture
context concerning business locations, readpoints, items, as well as business
processes and steps, according to the EPCglobal standards. Accordingly, the
deliverable introduces filters for mapping RFID data streams into business
events. These filters are specified in an XML-based language (conveniently called
FML (Filter Markup Language) in the ASPIRE context) and convey business logic.
A main characteristic of these filters is that they can be reused across different
RFID systems and applications. This considerably reduces the time required to
create new applications from scratch, thereby speeding up the development
process. In addition to reusability, FML provides modularity, since it enables RFID
integrators to express complex business logics as a collection of distinct reusable
filters. Overall, the presented filters boost the programmable nature of the
ASPIRE project, which asks for versatility and reusability in terms of RFID

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 7/62

filtering. Indeed, the proposed filtering markup language is versatile and easy to
understand for non-specialized developers and RFID integrators.

The business-level filtering mechanisms of this deliverable are part of the overall
ASPIRE Integrated Development Environment (IDE), since they are incorporated
in the wider ASPIRE tooling architecture. In practice, this means that RFID
integrators can define, configure, manage and deploy such filters within the
wider ASPIRE IDE, which serves as a single entry point to the definition, design
and deployment of integrated RFID solutions. Note that the deliverable provides
filtering examples using the FML language. The examples illustrate how to
program filters with business meaning in the context of the ASPIRE RFID
middleware platform. In particular it is shown how the envisioned filters can cope
with business events while being easy to understand by non-specialized RFID
solution integrators.

It should be noted that the filtering mechanisms are part of the open source
software (OSS) project “AspireRFID” project, which has been successfully
established in the scope of the OW2 community (please see
http://wiki.aspire.ow2.org/). Hence, the filtering functionality described in this
deliverable is an integral part of the AspireRfid project, as a set of middleware
libraries that interconnect the generation of Application Level Events with the
Information Sharing Repository. These libraries comprise the Business Event
Generator (BEG) module of the ASPIRE architecture, as described in Deliverable
D2.3b of the project [21].

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 8/62

Section 2 Introduction

2.1 RFID middleware: motives and functionalities

Recent advances in microelectronics and radiofrequency transceivers have paved
the way to more efficient and smaller RFID transponders ([19], [20]). As the
direct result of this, the cost of passive tags based on backscattering has been
dramatically reduced [20], and hence new applications at the item level such as
asset tracking and inventory management became possible [19].

Unlike conventional RFID applications such as toll payment and access control,
these new applications at the item level require of more specialized and complex
middleware tools [9]. Additionally, RFID standards have just recently been
updated to cope with these new item-level applications. As a result, many of the
current RFID middleware solutions still have to be designed on a per-case basis,
which considerably increases the total cost of ownership (TCO).

Due to these reasons, RFID middleware is gradually becoming a cornerstone for
non-trivial RFID deployments. This is particularly true in the scope of complex
heterogeneous environments comprising multiple readers, application instances,
legacy IT (Information technology) systems, as well as sophisticated business
processes and semantics. In these environments (e.g., in factories, warehouses,
and distribution centers) many distributed readers and antennas capture RFID
data, which must be conveyed to a variety of applications (such enterprise
resource planning (ERP) systems, warehouse management systems (WMS),
corporate databases, process management systems). In such settings,
middleware platforms are indispensable for three main reasons:

1. The need to filter out duplicated reads and excess information in order to
avoid pushing information that is not needed to the upstream applications, while
at the same time optimizing network resources.

2. The need to interface and deal with readers, tags and devices in a
heterogeneous multi-vendor environment without resorting to custom integration
logic.

3. The need to pass and route RFID data streams to different applications
and databases.

2.2 ASPIRE objectives and middleware architecture

In order to fill the gap in the development of middleware for RFID applications,
ASPIRE consortium aims at developing an open-source, programmable, light-
weight and scalable middleware platform. Furthermore, in order to deliver a
solution that best matches current market trends, ASPIRE consortium has carried
out a complete study on the requirements of end users via information days,
workshops, online questionnaires and training sessions. Among the main results,

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 9/62

the consortium found about two main points: 1) the lack of knowledge of SMEs
about the potential implications of this new technology; and 2) SMEs still
perceive RFID as an expensive solution as compared to legacy systems such as
optical bar scanners [22]. In addition, as a way to follow up and advance the
state-of-the art of middleware platforms, ASPIRE partners have carried out a
complete evaluation of existing middleware platforms, either open source or
proprietary [23]. The outcome of this research served the partners of the project
to have an idea of the needs and gaps in this area, and at the same time to
identify open-source software modules or innovative architectures that could be
reused or further upgraded.

As the result of this process, ASPIRE has defined a middleware architecture that
is fully compliant with the EPC suite of standards [8] (see Figure 1). The EPC set
of standards is mainly concerned with the processing of data in centralized RFID
architectures [10]. This means that this set of standards assumes that a central
node or core is in charge of the coordination, configuration, collection and other
functions of the platform. In Figure 1 we can observe the architecture framework
proposed by EPC. The modules are divided into three general functionalities:
Identification, capturing and exchange. These functionalities more or less
resemble those of the OSI (Open System Interconnection) model. For example
the identification modules are concerned with the format and mapping rules to
handle identification strings and other parameters required by upper layer
protocols. The capture functionality covers physical, medium access control and
link layer parameter definition (e.g. the tag protocol). Going up in the
architecture reference model in Figure 1, the capture functionality also includes
reader protocols that define the rules, cycles, and report formats for reader or
interrogators to pass information to the middleware platform. The main core of
the middleware, namely the filtering and collection module, is then defined by
the ALE (Application Level Event) standard, and further complemented for the
communication with upper business layers by the EPC Information Services
(EPCIS) standard.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 10/62

Figure 1: EPCglobal Architecture Framework

The ASPIRE architecture, which is fully described in deliverable D2.3 b [21] and
which is depicted for the sake of clarity in Figure 2, implements the set of EPC
standards and complements it by a set of added value features. From right to
left, Figure 2 exposes the main components of the architecture. First, a
heterogeneous landscape of readers from different providers is displayed. Note
that readers that are not under EPC or ASPIRE standards are connected to the
platform via a HAL or hardware abstraction layer, which basically converts
proprietary into ASPIRE semantics, and vice versa. Readers that deploy EPC
reader protocols are directly connected via RP or LLRP to the Filtering and
collection (F&C) server, which in turn implements the ALE interface standard to
upper layers. The F&C server filters unwanted data and forwards refined streams
to different subscribers. In ASPIRE the main subscriber is the BEG (Business
Event Generator), which interconnects the F&C and the EPCIS modules and
which constitutes and added value solution provided by ASPIRE. The EPCIS
module is finally connected to particular end user applications via, for example,
web-services. A key element in the ASPIRE architecture is the Integrated
Development Environment, which allows a rapid and efficient management of the

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 11/62

ASPIRE middleware platform. The management solution is not part of EPC
standards and hence it also constitutes an added value solution of ASPIRE.

Figure 2 ASPIRE Architecture for Programmability, Configurability and End-to-End

Infrastructure Management

2.3 ASPIRE innovative filtering solution

As observed in previous subsections, filtering has a prominent position in the
RFID middleware blocks. Legacy middleware products concentrate on

• Low-level filtering (Tags, Tag Data)
• Aggregation of readings
• Provision of basic low-level application events

Advancing on this legacy features, ASPIRE introduces a new approach to RFID
middleware through a two-tier filtering:

• Conventional filtering (e.g., EPC-ALE paradigm)

o Open Source Tools (Stored/Save, Edit, Delete Filters) compliant to
ALE specifications

• Filtering of business events (i.e. based on the paradigm of BEG module)
o Combination of filtered data with business metadata according to

declared/configured processes

o Specifications for mapping sensor reading events into business
events

• Filtering of many types of sensors other than RFID, like ZigBee (IEEE 802.15)

and HF sensors.

At the time of writing the DoW (Description of Work) [24], low-level filtering
functions had not been standardized. Hence we extended the scope of
programmable filters to business events with the Business Event Generator
(BEG) enabling programmable translation of basic filtered application events to

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 12/62

high level. Despite this, low level filtering functionalities, which will release the
middleware platform from some of its filtering functionalities and tag traffic to be
processed, have started to be investigated in the ASPIRE project (see
deliverables within work-package 3, e.g. D3.3 [25])

2.4 The ASPIRE FML (Filtering Markup Language)

The filtering functionality in an RFID platform is not only used to get rid of extra
information that is not relevant for upper layers, but it represents the connection
between the low level RFID world, and the business and application level
semantics, therefore being a critical point for middleware integrators and
developers. To provide a clear consensus for open source contributors around
this important interface, a straightforward solution is to use a high level
programming language oriented to describe business semantics and to isolate
them from the low level details of RFID platforms. Among such languages, one
that has received special interest due to its flexibility and great acceptance
between Internet and application developers is the extensible markup language
(XML). XML is a set of rules for encoding documents electronically. It is defined
in the XML 1.0 Specification produced by the W3C (world wide web consortium)
and several other related specifications; all are fee-free open standards. As the
name suggests, by using a set of markups, the language is able to be adapted to
a variety of purposes, including the filtering functionality of an RFID system as
described in this document. The filtering markup language proposed by ASPIRE
not only helps in the programmability of the tool but it also provides modularity
and the possibility of reusing filtering rules. In this way future developers can
start building up new and interesting filtering policies from previously tested and
mature solutions. Code reusability has been widely used in the software world,
for example in the context of compilers for object oriented languages, and in the
open source community itself. Reuse of filters with business meaning will allow
SMEs and untrained persons on RFID to deploy new applications in short periods
of time and at low cost.

2.5 Scope and organization of the document

This deliverable is dedicated to the specification and description of the filtering
markup language, its semantics, the type of reusable filters that arise from its
specification, the components of the ASPIRE architecture that are involved on the
defined filtering functionalities, and useful usage examples that help the
integrator understand the operation and structure of the language format and
the functionalities addressed in the filtering definition. Also note that this
document is the final version of the deliverable, thus being the culmination of the
preliminary specifications released in month 16 (M16) of the project (D4.3a in
[26]).

The present document is the report, whereas the implementation can be found at
the ASPIRE’s Wiki and Forge Pages. The executable final version of the
implementation can be found at the AspireRFID forge page
(http://forge.ow2.org/project/showfiles.php?group_id=324), the source code of
the implementation can be found at the AspireRFID SVN

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 13/62

(http://forge.ow2.org/plugins/scmsvn/index.php?group_id=324). Directions on
how to use the AspireRFID Information Sharing repository, Business Event
Generation and F&C module can be found at the AspireRFID Wiki documentation
page (http://wiki.aspire.ow2.org/xwiki/bin/view/Main/Documentation).

The rest of this deliverable is structured as follows:
• Section 3 discusses the role of the programmable filters and their impact on

the Aspire middleware architecture.
• Section 4 discusses the concept and the operation of the programmable filters

from a high level design perspective.
• Section 5 reviews the role of the Business Event Generator between the low

level event generator and the high level Information Systems
• Section 6 dives deep into the Programmable Filters Specification presenting

the three distinct components that assemble it.
• Section 7 discusses how these three components are combined to produce

business information that can be utilized by the high level Information
Systems.

• Section 8 explores the tools that have been built in the scope of Aspire to
implement the components of the Programmable Filters Specification

• Section 9 provides a complete example that demonstrates the use of the
aforementioned tools

• Section 10 gives an overview of low level filtering (filtering deported to the
reader device) which is the completed version of the specification previously
provided in D4.3a and finally

• Section 11 draws the main conclusions on the matters raised in this
deliverable.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 14/62

Section 3 Concept of Reusable filters

It is relatively straightforward for a trained person or an expert RFID
programmer to develop a new or adapt an existing RFID middleware platform
according to specific requirements and with the support of specific functions.
However, having such an expert RFID developer available for expanding the
system and adding new functions/features is difficult and expensive, particularly
for small and medium enterprises (SMEs).

A possible solution for this problem is the concept of reusable filters. By setting
specific filters for the RFID middleware using XML language (Extensible Markup
Language) and by using a suitable “engine” which would be able to interpret XML
semantics, one would be able to describe to that “engine” the requirements and
processes of an RFID infrastructure without the need of an expert RFID
developer. Thus, we would be able to set up this engine to serve specific
company operations without a lot of extra-effort. These filters can then be reused
in different application domains and by different end-users, as long as the
targeted processes are more or less similar. This reusability feature provides the
filtering module and in general the middleware platform with a high degree of
modularity, flexibility and programmability, all features that differentiate ASPIRE
from previous approaches.

Reusing code or pieces of code is, however, not new in the software world.
Compilers for object oriented programming languages exploit the concept of
reusing already compiled pieces of code as a means to save memory and
improve efficiency. Open source software communities themselves are also
based on a kind software reuse feature. In our case, reusable filters further
alleviate one of the main problems of initial middleware deployments that had to
be designed on a per-case basis. Filters can now be translated to many other
application scenarios with minimum effort and reduced cost. The reusability
concept directly derives from the ability to break off into distinct business
transactions a company’s business processes, which in turn can be broken up
into distinct Transaction Events. Figure 3 below illustrates the example of the
supply of consumer items (in this case bottles) all the way from the moment
they are shipped at the factory, going through the warehouse premises, up to
the shopping centre. This entire process is called Business Transaction or
Composite Business Process (see Figure 3). This extended business transaction
can be broken up into other three business transactions, each for a different
physical location. The transaction in the factory in Figure 3 can be further divided
into three transaction events or elementary business processes: Commission of
bottles, Pack Bottles into case and Shipment of the Tote. Note that the nature of
the first and third events is similar, hence they will be called Object events,
whereas the second one will be called Aggregation event. A similar partition can
be done in the transaction events at the Warehouse and at the Shopping centre.
Note that at the warehouse, reception of the cases, shipment of the tote, as well
as moving and storing cases in the warehouse can be regarded as Object events.
On the contrary, Picking and Packing is classified as aggregation event. Finally,

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 15/62

at the shopping centre, reception and unpacking of the tote can be regarded as
object and disaggregation events, respectively.

Figure 3 Wide Business Process/Transactions Example

The key point in the example of Figure 3 is that it is important to break up each
use case into a series of discrete business steps corresponding to various
business events so as to be able to reuse each one of them to describe a
different scenario. This also depends on the designer’s ability to abstract in a
proper way all the events of a business process in a common format that
resembles almost exactly other processes in different applications domains.

Fixed lists of identifiers with standardized meanings for concepts like business
step and disposition must be defined, along with rules for population of user-
created identifiers like read point, business location, business transaction and
business transaction type. All these information elements will be stored and
managed as pieces of Master Data within an appropriate database schema.
Master data is the name given to the set of properties or additional parameters
that are used to interpreting an event of a business process (see definition later
in this document).

Figure 4 depicts another example of the concept of decomposing a process into a
number of business events. The latter events comply with the ASPIRE
Information Sharing specifications for RFID events (with direct references to
EPC-IS framework). We call Elementary Business Process to the process that can
be directly decomposed into RFID business events (as shown in Figure 4).

The business events shown in Figure 4 are transaction start, object event (such
as receive are ship totes in the previous example), transaction observed,
aggregation event (such as picking and packing bottles in the previous example)
and transaction finish. Note that these business events completely describe the
given business process.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 16/62

Object
Event

Aggregation
Event

Transaction
Start

Transaction
Finish

Object
Event

Aggregation
Event

Transaction
Observed

Order Collection

Elementary RFID enabled
Business Process

 Business Events

Figure 4 Description of Elementary RFID enabled Business Process

These “Business Events” are stored at the Business’s Master Data which except
the business step, disposition, read point, business location, business transaction
and business transaction type. It should also define the required input needed
from the underlying Filtering and collection layer so as to create the current RFID
events. Details about the Master Data and Master Data Editor (MDE) are given in
section 6 and section 8, respectively.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 17/62

Section 4 Notion of Programmable Filters in the ASPIRE Architecture

Because ASPIRE is designed in such a way that it will be expandable,
configurable and modular, the use of Programmable filters arises as a natural
feature. Moreover ASPIRE IDE (Integrated Development Environment) will
include a programmability engine that will be able to process a fully fledged RFID
solution described in a special purpose domain specific language. This language
will be specified as part of future deliverables of WP4 in the ASPIRE project.

As mentioned in Section 3, the reusable filters and their proposed filtering
markup language (FML) need a “core” engine that interprets its semantics and
that executes the rules, policies or commands given in their parameter data
fields. In the AspireRFID middleware, this core “engine” consists of three
different components of the architecture (see also Figure 2 in section 2.2 to see
the overall ASPIRE architecture):

• The filtering and Collection (F&C) module, which is responsible of the low
level filtering. We recall that low level filtering simply deals with getting rid
of duplicated tag readings.

• The Business Event Generator (BEG) module, which is responsible for the
High Level filtering providing Business context to the captured events.

• And the Information sharing (IS) repository, which is the repository which
stores a company’s Master Data and Business functions.

Figure 5 demonstrates a complete Aspire programmable filter solution with
ASPIRE’s existing tools. With the help of a Master Data editor (explained in detail
in subsection 8.3) we can “describe” the company’s business data, processes and
the required Low Level input to create business events. Note that the Master
Data Editor (top left corner of Figure 3) is under the scope of the ASPIRE IDE.
Also shown in Figure 3 is an example of Master Data parameter values:
ecreport_names, event_name, business_step, business_location, ecspecname,
read_point and transaction_type. All these data are stored in the Information
Sharing repository (bottom left of Figure 3, tagged EPCIS repository) which is used
from the Business Event Generator on demand to configure its behavior on
creating the business events. Note in Figure 3 that the BEG is interconnected to
the EPCIS via two interfaces, one for capture and another for query. The query
interface is the one used by the BEG module to request Master Data on demand
from the EPCIS. With the help of ECSpec editor (top right of Figure 3) we can
create the required ECSpecs that configure the Filtering and Collections layer
behavior by using the ECSpec configurator (also called ALE server configurator in
Figure 3). Also note that in Figure 3, the box tagged as Defined ECspec contains
a code in XML format. The Filtering and Collection module (low right part of
Figure 3) after being configured as required collects the raw readings from the
attached RFID readers to it and produces the filtered ECReports which are fed
back to the Business Event Generator. Event data is the reported back from the
BEG to the EPCIS repository via the capture interface (see again bottom left part
of Figure 3). A complete detailed example is described in Section 9.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 18/62

Figure 5 Complete Programmable Filters ASPIRE solution

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 19/62

Section 5 Business Event Generation: Connecting F&C and Information

Services modules through Business Filters

Since the programmable filters described in this document are related to specific
components of the ASPIRE architecture, it is useful then before proceeding to
more technical specifications to understand, in simple words, their aim and how
they interact with each other.

The Information Services module specification defines a data language for
representing visibility information, namely events having four dimensions of
“what”, “when”, “where” and “why”.

Primarily, the Filtering and Collection module answers ‘What’, ‘Where’ and
‘When’. Information Services module adds the ‘Why’ (i.e., the business context).
For example, the ‘Where’ in Filtering and Collection module usually means a
logical reader name (e.g. reader X). This is later converted into a business
location in the Information Services module (e.g. Warehouse X).

Furthermore, the Filtering and Collection module interface is exclusively oriented
towards real-time processing of Information Services data, with no persistent
storage of these data required by the interface. Business applications (e.g. ERP,
WMS, etc.) that manipulate Information Services module data, in contrast,
typically deal explicitly with historical data and hence are inherently persistent in
nature. More details of the F&C server can be found in deliverable D3.3 [25]

Architecturally, the Filtering and Collection layer is first concerned with the
mechanics of data gathering, and then with filtering down such data to
meaningful events that are a suitable starting point for interpretation by business
logic. Business layers, where the Information Services module comes into play,
are concerned with business process and recording events that can serve as the
basis for a wide variety of enterprise-level information processing tasks.

Visibility information at the Information Services module level is often used to
record what took place in an operational business process that involves the
handling of physical assets, such as receiving goods through an entry door of a
warehouse. The module responsible for supervising such a process and
generating Information Services data is the Business Event Generation module.

The “glue” for the two modules described above, i.e. the information Service and
the Filtering and collection modules, and the one that collects the produced F&C
data and adds the “why” notion is the Business Event Generator module. To the
extent that the Business Event Generation module interacts with EPC data and/or
RFID tags in the course of carrying out its function, it uses ALE as the way to
read those EPC data and/or RFID tags and the Information Sharing to store these
“events”.

In most of the cases the Business Event Generation module is also responsible
for a complex orchestration of RFID devices, material handling equipment, and

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 20/62

human tasks that are involved in carrying out a business process. That is why
Filtering and Collection is used specifically to interact with the RFID devices, and
therefore it addresses a reduced scope. [4]

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 21/62

Section 6 Programmable Filters Specification (the different components)

6.1 Overview

To create programmable filters that contain a complete business logic throughout
the ASPIRE’s middleware we need to combine three different specifications
together. These specifications apply to three different modules of the ASPIRE
middleware architecture (for details of the architecture see deliverable D2.3b
[21] and the introductory section of this document) which are:

• the Filtering and collection module,
• the Business Event generation module and
• the Information Services repository module.

So to analyze the combination of the specifications of those three modules first
we need to study the components that are used from each one separately and
then specify the way in which they interact.

Note that in this section we are going to define the specifications for only the
required parts from the all ASPIRE’s architecture. For detailed specifications of
each module we refer the reader to other deliverables of the consortium, for
example D3.3 [25] for the specifications of data collection, filtering and
application events.

6.2 Filtering and Collection module

6.2.1 Role

The filtering and collection module (F&C) carries out processing to reduce the
volume of EPC data, transforming raw tag reads into streams of events more
suitable for application logic than raw tag reads. From the practical point of view,
the F&C module interacts with upper layer clients that are subscribed to its
services by defining report cycles and report data formats. These report data
formats define the type of data to be exchanged, while the cycles define the way
in which these data will be exchanged or retrieved and how often. The main
specifications that define these procedures are the ECSpecs, and within it, the
ECReportSpec. These are briefly described in the following subsections.

6.2.2 ECSpecs

An ECSpec is a complex type that describes an event cycle and one or more
reports that are to be generated from it. Current tags or tags that have been
added or deleted can be retrieved with respect to the last event cycle or
combinations of all. [3]

An ECSpec Contains (see Figure 6):

• An unordered list of Logical Readers called “logicalReaders” whose reader
cycles are to be included in the event cycle and are used to acquire tags.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 22/62

• A specification of how the boundaries of event cycles are to be determined
called “boundarySpec”. In brief, it specifies the starting and stopping
conditions for event cycles.

• An unordered list of Report Specifications, each describing a report to be
generated from this event cycle and to be included in the output from each
event cycle called “reportSpecs”.

For defining filters the most important part of an ECSpec is the ECReportSpec.

6.2.2.1 ECReportSpec

An ECReportSpec specifies one report to be included in the list of reports that
results from executing an event cycle. An ECSpec contains a list of one or more
ECReportSpec instances. When an event cycle is completed, an ECReports
instance is generated, unless suppressed. An ECReports instance contains one or
more ECReport instances, each corresponding to an ECReportSpec instance in
the ECSpec that governed the event cycle (see Figure 6). The ECReportSetSpec is
an enumerated type denoting what set of Tags is to be considered for filtering
and output: all Tags read in the current event cycle, additions from the previous
event cycle, or deletions from the previous event cycle (see Figure 6).

An ECReportSetSpec contains one or more ECFilterSpec which specifies the Tags
to be included in the final report. The ECFilterSpec implements a flexible filtering
scheme based on two pattern lists. Each list contains zero or more URI
(Universal Resource Identifier)-formatted EPC patterns. Each EPC pattern
denotes a single EPC, a range of EPCs, or some other set of EPCs.

An EPC is included in the final report if

a) the EPC does not match any pattern in the excludePatterns list, and
b) the EPC does match at least one pattern in the includePatterns list.

The (b) test is omitted if the includePatterns list is empty. [3]

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 23/62

Figure 6 ECSpecs and related fields

6.3 Information Services module

6.3.1 Role

The ASPIRE Information Sharing repository is responsible for receiving
application-agnostic RFID data from the filtering & collection middleware through
the Business Event Generation (BEG) application and store the translated RFID
data in corresponding business events. These events carry the business context
as well (e.g., they refer to particular companies, business locations, business
processes etc.). Moreover it makes business events and master data available
and accessible to other upstream applications through the query interface.

Generally, the ASPIRE information sharing repository is dealing with two kinds of
data:

• RFID event data i.e. data arising in the course of carrying out business
processes. These data change very frequently, at the time scales where
business processes are carried out.

• Master/company data, i.e. additional data that provide the necessary
context for interpreting the event data. These are data associated with the
company, its business locations, its read points, as well as with the
business steps comprising the business processes that this company
carries out.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 24/62

At a glance Information Services of the ASPIRE Information Sharing middleware
consists of three parts: a capture interface that provides web services for storing
data, a repository that provides persistence, and query interface that provides
web services that retrieves the business events/master data from the repository.

6.3.2 Event Data

Event data arises in the course of carrying out business processes. Event data
grows in quantity as more business is transacted, and refers to things that
happen at specific moments in time.

6.3.2.1 EPCIS Event

An EPCISEvent is a generic base class for all event types which provides date
and time fields (see strings “eventTime” and “recordTime” in Figure 7). Below is
given the EPCISEvent’s XML schema [2][6] and the different events are
described in the following subsections (see also Figure 8 for a schematic
representation of the different types of events.)

<xsd:complexType name="EPCISEventType" abstract="true">
 <xsd:sequence>
 <xsd:element name="eventTime" type="xsd:dateTime" />
 <xsd:element name="recordTime" type="xsd:dateTime"
minOccurs="0" />
…
 </xsd:sequence>
 <xsd:anyAttribute processContents=”lax” />
</xsd:complextype>

Figure 7 EPCISEvent’s XML schema

Figure 8 EPCIS Events

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 25/62

6.3.2.2 Aggregation Event

An AggregationEvent describes events related to objects that have been
physically aggregated. In such an event, there is a set of contained objects that
have been aggregated within a containing entity which identifies the physical
aggregation itself. The contained objects are called children and the containing
entity is called parent.

Because an AggregationEvent indicates aggregations among physical objects, the
children are identified by EPCs. However, the parent entity is identified by an
arbitrary URI (which may or may not be an EPC) because the parent is not
necessarily a physical object that is separate from the aggregation itself. Below is
given the AggregationEvent’s XML schema. [2][6]

<xsd:complexType name="AggregationEventType">
 <xsd:complexContent>
 <xsd:extension base="epcis:EPCISEventType">
 <xsd:sequence>

<xsd:element name="parentID"
type="epcis:ParentIDType"

 minOccurs="0" />
<xsd:element name="childEPCs"
type="epcis:EPCListType" />
<xsd:element name="action" type="epcis:ActionType"
/>
<xsd:element name="bizStep"
type="epcis:BusinessStepIDType"

 minOccurs="0" />
<xsd:element name="disposition"
type="epcis:DispositionIDType"

 minOccurs="0" />
<xsd:element name="readPoint"
type="epcis:ReadPointType"

 minOccurs="0" />
<xsd:element name="bizLocation"
type="epcis:BusinessLocationType"

 minOccurs="0" />
<xsd:element name="bizTransactionList"
type="epcis:BusinessTransactionListType"

 minOccurs="0" />
 …
 </xsd:sequence>
 <xsd:anyAttribute processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Figure 9 AggregationEvent’s XML schema

6.3.2.3 Object Event

An ObjectEvent captures information about an event pertaining to one or more
physical objects identified by EPCs.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 26/62

Logically, an ObjectEvent pertains to a single object identified by an EPC.
However, you can specify more than one EPC in an epcList when the remaining
ObjectEvent data applies to all the EPCs in the list.

In an ObjectEvent, no relationship among the EPCs is implied by their
appearance in the same ObjectEvent other than the coincidence of them all being
captured with identical information. By contrast, an AggregationEvent or
TransactionEvent conveys an implicit association among the EPCs in the event.
Below is given the ObjectEvent’s XML schema. [2][6]

<xsd:complexType name="ObjectEventType">
<xsd:complexContent>
 <xsd:extension base="epcis:EPCISEventType">
 <xsd:sequence>
 <xsd:element name="epcList" type="epcis:EPCListType" />
 <xsd:element name="action" type="epcis:ActionType" />
 <xsd:element name="bizStep"
 type="epcis:BusinessStepIDType"
 minOccurs="0" />

<xsd:element name="disposition"
type="epcis:DispositionIDType"

 minOccurs="0" />
 <xsd:element name="readPoint" type="epcis:ReadPointType"
 minOccurs="0" />

<xsd:element name="bizLocation"
type="epcis:BusinessLocationType"

 minOccurs="0" />
<xsd:element name="bizTransactionList"
type="epcis:BusinessTransactionListType"

 minOccurs="0" />
 …
 </xsd:sequence>
 <xsd:anyAttribute processContents="lax" />
 </xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Figure 10 ObjectEvent’s XML schema

6.3.2.4 Quantity Event

A QuantityEvent is an event that happens to a specified number of objects all
having the same type, but where the individual instances are not identified.
Quantity Events can serve as a bridge between RFID systems and legacy
inventory systems that do not identify individual items. Below is given the
QuantityEvent’s XML schema. [2][6]

<xsd:complexType name="QuantityEventType">
 <xsd:complexContent>
 <xsd:extension base="epcis:EPCISEventType">
 <xsd:sequence>

<xsd:element name="epcClass"
type="epcis:EPCClassType" />

 <xsd:element name="quantity" type="xsd:int" />
 <xsd:element name="bizStep"
 type="epcis:BusinessStepIDType"

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 27/62

 minOccurs="0" />
<xsd:element name="disposition"
type="epcis:DispositionIDType"

 minOccurs="0" />
<xsd:element name="readPoint"
type="epcis:ReadPointType"

 minOccurs="0" />
<xsd:element name="bizLocation"
type="epcis:BusinessLocationType"

 minOccurs="0" />
<xsd:element minOccurs="0"
name="bizTransactionList"

 type="epcis:BusinessTransactionListType" />
 …
 </xsd:sequence>
 <xsd:anyAttribute processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Figure 11 QuantityEvent’s XML schema

6.3.2.5 Transaction Event

A TransactionEvent describes the association or disassociation of physical objects
to a business transaction. While other event types have an optional
bizTransactionList field that can be used to provide context for an event, the
TransactionEvent is used to declare in an unequivocal way that certain EPCs have
been associated or disassociated with one or more business transactions as part
of the event. Below is given the TransactionEvent’s XML schema. [2][6]

<xsd:complexType name="TransactionEventType">
 <xsd:complexContent>
 <xsd:extension base="epcis:EPCISEventType">
 <xsd:sequence>

<xsd:element name="bizTransactionList"
type="epcis:BusinessTransactionListType" />
<xsd:element name="parentID"
type="epcis:ParentIDType"

 minOccurs="0" />
<xsd:element name="epcList"
type="epcis:EPCListType" />
<xsd:element name="action" type="epcis:ActionType"
/>
<xsd:element name="bizStep"
type="epcis:BusinessStepIDType"

 minOccurs="0" />
<xsd:element name="disposition"
type="epcis:DispositionIDType"

 minOccurs="0" />
<xsd:element name="readPoint"
type="epcis:ReadPointType"

 minOccurs="0" />
<xsd:element name="bizLocation"
type="epcis:BusinessLocationType"

 minOccurs="0" />

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 28/62

 …
 </xsd:sequence>
 <xsd:anyAttribute processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Figure 12 TransactionEvent’s XML schema

6.3.3 Actions Types

The Action type says how an event relates to the lifecycle of the entity being
described. The Action type has three possible values (see Figure 13):

• Add which means that the entity in question has been created or added
to.

• Observe which means that the entity in question has neither been
changed, nor has it been created, added to, destroyed or removed from.

• Delete which means that the entity in question has been removed from or
destroyed altogether.

Figure 13 Action types

6.3.4 Master Data

Master data is additional data that provides the necessary context for
interpreting event data. It is available for filtering a query through the EPCIS
Query Interface, and available as part of a report through the Reporting Service.

Master data does not grow merely because more business is transacted. It is not
typically tied to specific moments in time and provides interpretation for
elements of event data.

Master data is business-context information that is associated with event data by
the Business Event Generation module reporting service and by the data
exchange service.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 29/62

6.3.4.1 Master Data Types

A master data type is a definition for master data entries of that type. Each
master data type defines a set of attributes and their data types.

A master data entry is a concrete instance of a master data type. You can create
as many entries as you need of each master data type. Each entry has the same
set of attributes defined for its master data type, but where the master data type
defines the data type for each attribute an entry’s attributes contain the real
business-context information associated with a business’s operations. [2][6]

The available master data types are (see also figure below):

• bizLocation
• bizStep
• bizTransactionList
• bizTransaction which is composed of

o Business Transaction and
o Business Transaction Type

• disposition
• epcClass
• readPoint

Figure 14 Master Data types

The master data type that mostly concerns us to define the required
programmable filter is the “BusinessTransaction” type which is next analyzed.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 30/62

6.3.4.1.1 BusinessTransaction

A BusinessTransaction field identifies a particular business transaction.
Transaction information may be included in EPCIS events to record an event’s
participation in particular business transactions. [6]

A business transaction is described in Information Services module by a
structured type consisting of the following pair of identifiers:

• BusinessTransactionTypeID
• BusinessTransactionID

BusinessTransactionID is a vocabulary whose elements denote specific business
transactions. In Table 1 below the BusinessTransactionID’s attributes are shown.
The attribute that are most significant to create an EPCIS event are:

• The “ECReportNames” one which stores a list of the incoming ECReport
names, to the Business Event Generator module, which concerns the
event to be created.

• The “EventType” which denotes the type of the event (Aggregation Event,
Object Event, Quantity Event or Transaction Event)

• And the “Action” which denotes how an event relates to the lifecycle of the
entity being described.

Attribute Name Attribute URI
ECReportNames urn:epcglobal:epcis:mda:ecreport_names
EventName urn:epcglobal:epcis:mda:event_name
EventType urn:epcglobal:epcis:mda:event_type
BusinessStep urn:epcglobal:epcis:mda:business_step
BusinessLocation urn:epcglobal:epcis:mda:business_location
Disposition urn:epcglobal:epcis:mda:disposition
ReadPoint urn:epcglobal:epcis:mda:read_point
TransactionType urn:epcglobal:epcis:mda:transaction_type
Action urn:epcglobal:epcis:mda:action

Table 1 Business Transaction ID Attributes

6.4 Business Event Generation module

The architecture introduces a Business Event Generator (BEG) module between
the F&C and Information Sharing (e.g., EPC-IS) modules as shown in Figure 15.
The role of the BEG is to automate the mapping between reports stemming from
F&C and IS events. The Business event generation module associates business-
context information (Master Data) with event data. The data is stored in the
Information Service module repository.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 31/62

6.4.1 Role

BEG module recognizes the occurrence of EPC-related business events, and
delivers these as EPCIS data. It may coordinate multiple sources of data in the
course of recognizing an individual EPCIS event. Sources of data include filtered,
collected EPC data obtained through the Filtering & Collection Interface.

6.4.2 Functionality

In order for BEG to create the business events it needs the appropriate
information from the repository. Hence, the EPCIS standard defines all the
information that the EPCIS events encapsulate. This data necessary for the
proper population of the EPCIS events are retrieved from the EPCIS repository,
and more specifically the data defined at the BusinessTransaction’s Attributes,
using the query interface. This predefined information is entered and managed
using the master data editor as shown in Figure 15 below (this process is
indicated by the top arrow entering the EPCIS repository and indicates the
definition of the elementary business processes). With the use of the MDE editor
(paragraph 8.3) the end-user organizations can properly populate the
vocabularies so as make the event generation possible. The MDE operates over
the EPCIS layer also and could be considered an implementation of an accessing
application according to the EPC Network Architecture terminology.

Figure 15 Role of the BEG Configurator and MDE tools

As already outlined BEG is a capturing application: BEG stores the data in the
EPCIS repository as event data in an automated fashion, thereby adding
business context to RFID readings in order to transform them to the target

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 32/62

business semantics as required by the particular business case associated with
an overall RFID deployment. In order to create business context, BEG relies on a
description of the target business processes, which should be described in the
EPCIS Master Data. Each process is defined and described based on the
composition of a discrete series of business steps. According to the EPCIS
specification, each business step can be modeled by one EPCIS event of the
specification. In particular, each business process has an identifier in the
Business Transaction Vocabulary and is associated with a number of events. Each
event is characterized as shown in Table 1 above by the type of the event, the
event’s action, the business location that the event takes place, the event’s
business step, the captured items disposition, the read point which the action
took place and finally the required report names.

The attributes mentioned above constitute all of the information required in order
to properly create an EPCIS event. Recall that based on such master data type,
BEG is able to transform EC Reports from ALE into EPCIS events that can be
stored in the EPCIS repository. Hence, each described event is associated with a
list of Report names. The reports described in a specific ECSpec define all the
required details about the Event Cycle and what kind of ECReports are to be
delivered to the BEG. The BEG should be previously configured according to what
specific report names is expecting from the F&C module which are defined in the
business transaction vocabulary of the corresponding event[18].

In the context of Figure 15 the configuration process of the BEG module is
indicated by two steps: first an arrow that goes from the EPCIS module to the
editor and indicates the retrieval of the necessary information to configure the
BEG, and second another arrow that goes from the editor to the BEG module and
indicates the uploading of the configuration files to the BEG. Finally, real time
capturing of events is displayed in the editor by obtaining real time information
from the BEG and the BEG generates event data that are stored in the EPCIS
module.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 33/62

Section 7 Programmable Filters Specification (creating business logic)

7.1 Overview

While RFID readers detect and report tags along with a timestamp, it is not
trivial to identify and populate properly business events based solely on a set of
low-level RFID readings (i.e. tag streams). For example, there is a need to
distinguish the identity of a containing entity from identities of the contained
objects in the case of aggregations (e.g., a pallet carrying tagged objects that is
in the range of an RFID reader). Most important, a business transaction as
defined in the master data must be correlated with a specific transaction as is
“monitored” by other applications. To address these needs we segment EPCs in
classes. As an organization is assigned (from EPCglobal) and manages a pool of
EPCs, it is possible to segment them into categories and reserve some of these
categories for specific usage. Hence, a class of EPCs could be reserved for
aggregating entities (e.g. pallets or boxes). The classification can then be used to
populate the aggregation event. Another class may be reserved to denote a
general category for all physical objects under detection, whereas another class
can be used to signify documents that accompany business transactions (e.g.,
invoices). Also, a naming convention for the pattern of the report name is used.
Specifically the implementation of BEG, understands a report name that starts
with the string “bizTransactionIDs” as the name of the report carrying the EPC of
the documents accompanying a process. Likewise, a report name starting with
“parentObjects” is expected to carry the parent aggregating entity, while a report
name starting with “transactionItems” is expected to carry the EPCs of the
tagged items, etc. In the case only of quantity events, which do not have an EPC
list and only the quantity of items affected by the event is of interest, this report
is expected to contain the EPC class along with the number of items of the
class.[18]

So as previously explained the "glue” from the three modules described in
Section 6 to create business logic at the AspireRFID middleware is the BEG
module, which uses the predefined data provided from the two others to produce
the required EventData. Below the “event generation” notion is analyzed in more
details and the relationship between the three middleware modules required for
that will become clearer.

7.2 Combining ECSpecs & BizTransaction Attr to create Event Data

To create Event Data, some event fields are required and some are optional.
Table 2 maps these associations. In addition, later on we are going to describe
how we should set up our middleware to get these event fields and create the
desired Event Data.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 34/62

R = Required
O = Optional ObjectEvent AggregationEvent QuantityEvent TransactionEvent

Action R R R
bizLocation O O O O
bizStep O O O O
bizTransactionList O O O R
childEPCs R
Disposition O O O
epcClass R
epcList R R
eventTime R R R R
parented R O
Quantity R
readPoint O O O O

Table 2 Event fields with Event Types mapping [2]

The sequence for creating the various Business Events shown in Figure 16 at the
ASPIRE middleware is the following. The Filtering and Collection module receives
the raw readings from the Logical Readers attached to it. The F&C module, in
turn, processes the received readings taking in consideration the already
predefined ECSpecs and delivers the produced ECReport to the Business Event
Generation module. The Event Generation module receives the ECReport
produced by the F&C module and processes them taking in consideration the
BusinessTransaction attributes data from the already predefined Master Data of
the company. Finally the Business Event Generation module sends to the
Information Services module Capturing interface the produced event data where
they are stored in a repository and are available for other applications, in our
case the Connector application, to query through its Query Interface.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 35/62

Figure 16 Creating Event data Sequence

7.2.1 Creating an Aggregation Event

To create an Aggregation Event the Business Event Generation module should
receive an ECReport from the Filtering and Collection module comprised from
three reports named:

• “bizTransactionIDs_*”
• “transactionItems_*”
• And “parentObjects_*”

Where (*) the BusinessTransaction vocabulary URI.

7.2.1.1 Setting up the ECSpec

At the “bizTransactionIDs” report a filter should be set up in such a way that the
F&C module would report, every time they are captured, only patterns of the
included transaction ID Classes. An example of such a ReportSpec for the
“urn:epc:pat:gid-96:145.12.*” class is shown below.

<reportSpec reportOnlyOnChange="false"
reportName="bizTransactionIDs_urn:epcglobal:fmcg:bte:xxxxxxxxx"
 reportIfEmpty="true">

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 36/62

 <reportSet set="CURRENT" />
 <filterSpec>
 <includePatterns>
 <includePattern>

urn:epc:pat:gid-96:145.12.*
</includePattern>

 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

Figure 17 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.12.*” class

At the “transactionItems” report a filter should be set up in a way that the F&C
module would report, only the first time they are captured, only ID’s belonging in
the selected patterns of the included items Classes. An example of such a
ReportSpec for the “urn:epc:pat:gid-96:145.233.*” class is shown below.

<reportSpec reportOnlyOnChange="false"
reportName="transactionItems_urn:epcglobal:fmcg:bte:xxxxxxxxx"
 reportIfEmpty="true">
 <reportSet set="ADDITIONS" />
 <filterSpec>
 <includePatterns>
 <includePattern>
 urn:epc:pat:gid-96:145.233.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

Figure 18 An example of ReportSpec for the “urn:epc:pat:gid-96:145.233.*” class

At the “parentObjects” report a filter should be set up in a way that the F&C
module would report, every time they are captured, only patterns of the included
parent Objects Classes. An example of such a ReportSpec for the
“urn:epc:pat:gid-96:145.56.*” class is shown below.

<reportSpec reportOnlyOnChange="false"
reportName="parentObjects_urn:epcglobal:fmcg:bte:xxxxxxxxx"
 reportIfEmpty="true">
 <reportSet set="CURRENT" />
 <filterSpec>
 <includePatterns>
 <includePattern>
 urn:epc:pat:gid-96:145.56.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec>

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 37/62

 <pattern>
 urn:epc:pat:gid-96:145.56.*
 </pattern>
 </groupSpec>
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

Figure 19 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.56.*” class

7.2.1.2 Processing the ECReport

As soon as the report is received from the Business Event Generator module it is
first checked whether a “bizTransactionID” is included or not. If it has then the
specific one is used. If it has not then the last received one is used. Every
“transactionItem” and “parentObject” is received and from now on it is bind with
the specific “bizTransactionID”.

After this it is checked if a “parentObject” is reported. If it has been reported,
then it is used as the “parentObject” for every “transactionItem” received from
now on. If it hasn’t then the last received “parentObject” is used.

Finally, it is checked whether any “transactionItems” are reported. If they have
then these “transactionItems” get as “parentObject” and “bizTransactionID” the
last reported.

The rest of the information required to build the Aggregation Event is taken from
the BusinessTransaction’s attributes stored at the Information Services module
repository.

7.2.2 Creating an Object Event

To create an Object Event the Business Event Generation module should receive
an ECReport from the Filtering and Collection module comprised from two reports
named:

• “bizTransactionIDs_*”
• And “transactionItems_*”

Where (*) the BusinessTransaction vocabulary URI.

7.2.2.1 Setting up the ECSpec

At the “bizTransactionIDs” report a filter should be set up in a way that the F&C
module would report, every time they are captured, only patterns of the included
transaction ID Classes. An example of such a ReportSpec for the
“urn:epc:pat:gid-96:145.12.*” class is shown below.

<reportSpec reportOnlyOnChange="false"
reportName="bizTransactionIDs_urn:epcglobal:fmcg:bte:xxxxxxxxx"
 reportIfEmpty="true">
 <reportSet set="CURRENT" />
 <filterSpec>
 <includePatterns>

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 38/62

 <includePattern>
urn:epc:pat:gid-96:145.12.*

</includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

Figure 20 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.12.*”

At the “transactionItems” report a filter should be set up in a way that the F&C
module would report, only the first time they are captured, only ID’s belonging in
the selected patterns of the included items Classes. An example of such a
ReportSpec for the “urn:epc:pat:gid-96:145.233.*” class is shown below.

<reportSpec reportOnlyOnChange="false"
reportName="transactionItems_urn:epcglobal:fmcg:bte:xxxxxxxxx"
 reportIfEmpty="true">
 <reportSet set="ADDITIONS" />
 <filterSpec>
 <includePatterns>
 <includePattern>
 urn:epc:pat:gid-96:145.233.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

Figure 21 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.233.*”class

7.2.2.2 Processing the ECReport

As soon as the report is received from the Business Event Generator module it is
first checked whether a “bizTransactionID” has been included or not. If the
specific one has been found then it is used, otherwise the last one received is
used. Every “transactionItem” received from now on is bind with the specific
“bizTransactionID”.

Finally, BEG checks whether any “transactionItems” are reported. If so, these
“transactionItems” get as “bizTransactionID” the last reported.

The rest of the information required to build the Object Event is taken from the
BusinessTransaction’s attributes stored at the Information Services module
repository.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 39/62

7.2.3 Creating a Quantity Event

To create a Quantity Event the Business Event Generation module should receive
an ECReport from the Filtering and Collection module comprised from two reports
named:

• “bizTransactionIDs_*”
• And “transactionItems_*”

Where (*) the BusinessTransaction vocabulary URI.

7.2.3.1 Setting up the ECSpec

At the “bizTransactionIDs” report a filter should be set up in a way that the F&C
module would report, every time they are captured, only patterns of the included
transaction ID Classes. An example of such a ReportSpec for the
“urn:epc:pat:gid-96:145.12.*” class is shown below.

<reportSpec reportOnlyOnChange="false"
reportName="bizTransactionIDs_urn:epcglobal:fmcg:bte:xxxxxxxxx"
 reportIfEmpty="true">
 <reportSet set="CURRENT" />
 <filterSpec>
 <includePatterns>
 <includePattern>

urn:epc:pat:gid-96:145.12.*
</includePattern>

 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

Figure 22 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.12.*” class

At the “transactionItems” report a filter should be set up in a way that the F&C
module would report, only the first time they are captured, the count of the
included patterns and in which Class they belong to. An example of such a
ReportSpec for the “urn:epc:pat:gid-96:145.233.*” class is shown below.

<reportSpec reportOnlyOnChange="false"
reportName="transactionItems_urn:epcglobal:fmcg:bte:xxxxxxxxx"
 reportIfEmpty="true">
 <reportSet set="ADDITIONS" />
 <filterSpec>
 <includePatterns>
 <includePattern>
 urn:epc:pat:gid-96:145.233.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec>

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 40/62

 <pattern>
 urn:epc:pat:gid-96:145.233.*
 </pattern>
 </groupSpec>
 <output includeTag="false" includeRawHex="false"

includeRawDecimal="false" includeEPC="false"
includeCount="true" />

</reportSpec>

Figure 23 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.233.*” class

7.2.3.2 Processing the ECReport

As soon as the report is received from the Business Event Generator module it is
first checked whether a “bizTransactionID” has been included or not. If it has
been included then the specific one is used, otherwise the last one received is
used. Every “transactionItem” received from now on is bind to the specific
“bizTransactionID”.

Finally BEG checks whether any “transactionItems” are reported. If so, the count
of these items and their Class get as “bizTransactionID” the last reported.

The rest of the information required to build the Quantity Event is taken from the
BusinessTransaction’s attributes stored at the Information Services module
repository.

7.2.4 Creating an Transaction Event

To create Transaction Event the Business Event Generation module should
receive an ECReport from the Filtering and Collection module comprised from
three reports named:

• “bizTransactionParentIDs_*”
• “bizTransactionIDs_*”
• And “transactionItems_*”

Where (*) the BusinessTransaction vocabulary URI.

7.2.4.1 Setting up the ECSpec

At the “bizTransactionParentIDs” report a filter should be set up in a way that the
F&C module would report, every time they are captured, only patterns of the
included transaction ID Classes. An example of such a ReportSpec for the
“urn:epc:pat:gid-96:145.19.*” class is shown below.

<reportSpec reportOnlyOnChange="false"
 reportName="bizTransactionParentIDs_urn:epcglobal:fmcg:bte:xxxxxxxxx"
reportIfEmpty="true">
 <reportSet set="CURRENT" />
 <filterSpec>
 <includePatterns>
 <includePattern>

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 41/62

urn:epc:pat:gid-96:145.19.*
</includePattern>

 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

Figure 24 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.19.*” class

At the “bizTransactionIDs” report a filter should be set up in a way that the F&C
module would report, only the first time they are captured, only patterns of the
included transaction ID Classes. An example of such a ReportSpec for the
“urn:epc:pat:gid-96:145.12.*” class is shown below.

<reportSpec reportOnlyOnChange="false"
reportName="bizTransactionIDs_urn:epcglobal:fmcg:bte:xxxxxxxxx"
 reportIfEmpty="true">
 <reportSet set="ADDITIONS" />
 <filterSpec>
 <includePatterns>
 <includePattern>

urn:epc:pat:gid-96:145.12.*
</includePattern>

 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

Figure 25 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.12.*” class

At the “transactionItems” report a filter should be set up in a way that the F&C
module would report, only the first time they are captured, only ID’s belonging in
the selected patterns of the included items Classes. An example of such a
ReportSpec for the “urn:epc:pat:gid-96:145.233.*” class is shown below.

<reportSpec reportOnlyOnChange="false"
reportName="transactionItems_urn:epcglobal:fmcg:bte:xxxxxxxxx"
 reportIfEmpty="true">
 <reportSet set="ADDITIONS" />
 <filterSpec>
 <includePatterns>
 <includePattern>
 urn:epc:pat:gid-96:145.233.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true" includeCount="true" />
</reportSpec>

Figure 26 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.233.*” class

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 42/62

7.2.4.2 Processing the ECReport

As soon as the report is received from the Business Event Generator module, it is
first checked whether a “bizTransactionParentID” has been included or not. If it
has been included then the specific one is used. If it hasn’t then the last one
received is used. Every “bizTransactionID” and “transactionItem” received from
now on are bind with the specific “bizTransactionParentID”.

Finally, it is checked whether any “bizTransactionIDs” and/or “transactionItems”
are reported. If they are these “bizTransactionIDs” and/or “transactionItems”
get as “bizTransactionParentID” the last reported.

The rest of the information required to build the Transaction Event is taken from
the BusinessTransaction’s attributes stored at the Information Services module
repository.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 43/62

Section 8 Available Tools for Defining Business Filters

8.1 Overview

As far as ease of development is concerned, the ASPIRE architecture specifies
the existence of an IDE (Integrated Development Environment), which is
conveniently called AspireRFID IDE (see Figure 27 below) enabling the visual
management of all configuration files and meta-data that are required for the
operation of an RFID solution.

Figure 27 Programmability Tooling

AspireRFID IDE has been designed as an Eclipse RCP (Rich Client Platform)
application that runs over Equinox OSGI server. It uses the command API
(Application Program Interface) to define menus, pop-up menu items and
toolbars so as to support easily plug-ins and provide more control. Every tool is
an eclipse plug-in/bundle that is able to be installed or removed as needed. This
way many editions of the AspireRFID IDE can be released depending on the
functionalities required (as simple or as complicated depending on the demands)
for the ASPIRE’s RFID middleware blocks that will be used.

For specifying reprogrammable filters we use the ECSpec Editor and the Master
Data Editor with the help of whom we are able to produce the required metadata
to configure the Filtering and Collection module and the Business Event
Generator module.

8.2 ECSpec Editor

ECSpec editor is a tool which is able to produce and edit EPC ALE V1.1 compliant
ECSpec documents which are used to define the Filtering & Collection’s module
behavior concerning the kind of reports it will produce and which logical readers
it will use to produce it. A sample view of the ECSpec editor is shown in Figure 28
below.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 44/62

Figure 28 ECSpec Editor View

8.3 Master Data Editor (MDE)

The Master Data Editor (with support for Elementary Business Process
Description) enables users and/or consultants to edit enterprise data (Master
Data) including information about the company’s location, its business locations,
read points, as well as its business processes. The Master Data Editor (MDE) can
be used for populating and managing vocabularies in the Master Data.
Organizations can use this tool for the proper population of the Master Data
without the need to know the associations of the Master Data vocabularies
(Database Schema). All the relations among the RFID data and the restrictions
are delegated to be the MDE’s responsibility.

The MDE serves as an interface that is used to create the EPCIS repository
master data and edit them as needed. Using the MDE users’ can populate the
EPCIS vocabularies and store all of the necessary information needed to provide
business context to RFID data. The data are manipulated in an intuitive manner,
and the user can view how they are related. Our MDE implementation uses the
EPC EPCIS 1.0.1 specifications [6] query interface provided by Fosstrak [5] and

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 45/62

the AspireRFID Master Data capture interface [17] in order to access the EPCIS
repository. Note that we have extended the Fosstrak project implementation, in
a way that allows editing of the vocabularies which allows to the user to modify
already existing master data. As already outlined MDE also complements BEG
since MDE guides users to store all the data BEG needs in order to populate
properly the fields of the various EPCIS events.

Using the MDE the user has the ability to define a process, and assign attributes
that are descriptive to it and convey useful information about it. Additionally the
user can define all of the events that compose the process. The events are
treated as transactions and their EPC is stored in the business transaction
vocabulary. In the attribute vocabulary for the transactions all of the related
information for the events and the transactions is stored in the form of attribute-
value pairs. The transactions are associated with the events through the
attributes vocabulary. In Figure 29 we see that a user has created a process for
supplying and has assigned certain information to it. This information (attributes)
can be modified or removed as needed, or even new information can be added.
As an example, in Figure 30, the user has associated an Object Event with this
process and has provided all of the necessary information.

Figure 29 Definition of a transaction in the MDE

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 46/62

Figure 30 Process defined as a set of EPCIS events

A user has the ability to populate all the master data vocabularies using the
corresponding tab, i.e. the Disposition vocabulary, the Business Step vocabulary,
the Readers vocabulary, the Transaction Type vocabulary and the Business
Location vocabulary. For all cases, the user can add a new element, associate
attributes with it or edit an existing element, searching for it either among all of
the existing elements or by the EPC. In the business location tag an organization
can accurately describe all of the locations it owns in a hierarchical manner. For
example has assuming that an organization has two warehouses, and two
sections within the first warehouse, this can be reflected in the database and
represented visually to the user which can add a location either as a single entity
or as part of another location and associate attributes to it.

A new concept introduced in the MDE is the ability of the user to declare a
location as no longer active. A user can mark a location as “deprecated” and this
location and all of its sub locations will be defined as inactive as well in the
database as we can see in Figure 31 below. The reason for such a feature is that
as you have “described” your company to the system and work this way for
some time a specific business location will be inevitably be bind with specific
captured EPCIS Events. If later on the structure of the company enforce for a
location to physically be removed, if we also delete it from the database, the

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 47/62

business location information of the already captured EPCIS events related with
the specific location will be lost. So the notion of deprecation was created so as
in spite the fact that the information is no longer used will not be lost. This is
accomplished by adding an extra Boolean attribute at the business location, and
this is allowed by the standard since it does not impose any restrictions on how
to use the various attributes, which we call deprecated
(urn:epcglobal:epcis:mda:deprecated). Also, a user can change the state and
“un-deprecate” a location if necessary.[18]

Figure 31 Master Data Editor (Business Location) - Company Acme owns 2 warehouses

(Location AcmeWarehouse3 is no longer active)

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 48/62

Section 9 A complete example using Programmable filters

9.1 Describing the Problem

A Company Named “ACME”, which is a Personal Computer Assembler,
collaborates with a Microchip Manufacturer that provides it with the required
CPUs (Central processing Units). ACME at regular basis places orders to the
Microchip Manufacturer for specific CPUs. ACME owns a Central building with
three Warehouses. The first warehouse named Warehouse1 has 2 Sections
named Section1 and Section2. Section1 has an entrance point where the goods
arrive.

ACME needs a way to automatically receive goods at Warehouse1 Section1 and
inform its WMS (Warehouse management system) for the new product
availability and the correct completeness of each transaction.

9.2 Solution Requirements

An RFID Portal should be placed at ACME’s Warehouse1 Section1 entrance point
which will be called ReadPoint1. The RFID portal will be equipped with one
Reader WarehouseRfidReader1. The received goods should get equipped with
preprogrammed RFID tags from their “Manufacturer”. The received goods should
be accompanied with a preprogrammed RFID enabled delivery document. And
finally AspireRFID middleware (Figure 32 below) should be configured for the
specific scenario.

Figure 32 AspireRFID Architecture

9.3 Setting up the Filtering and collection Module

To Configure the Filtering and collection Module we should create an ECSpec for
creating Object Events for the Class of “products” and the Class of “receiving

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 49/62

notes” that we expect to pass through the gate and that concerns our transaction
(Figure 5). For the “bizTransactionIDs” reportSpec we will set the “receiving
notes” Class ID’s and for the “transactionItems” reportSpec we will set the
“received items” Class ID’s

• So the “receiving notes” Classes are:
o urn:epc:pat:gid-96:145.12.*
o urn:epc:pat:gid-96:239.30.*

• and the “received items” Classes are:

o urn:epc:pat:gid-96:145.233.*
o urn:epc:pat:gid-96:1.3.*
o urn:epc:pat:gid-96:1.4.*
o urn:epc:pat:gid-96:145.255.*

By using the ECSpec editor as shown in Figure 33 below

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 50/62

Figure 33 ECSpec Editor (Object Event)

We produce the ECSpec shown below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ECSpec includeSpecInReports="false"
xmlns:ns2="urn:epcglobal:ale:xsd:1">
 <logicalReaders>
 <logicalReader>AccadaSimulatorWithRPProxy
 </logicalReader>
 </logicalReaders>
 <boundarySpec>
 <repeatPeriod unit="MS">4500</repeatPeriod>
 <duration unit="MS">4500</duration>
 <stableSetInterval unit="MS">0</stableSetInterval>
 </boundarySpec>
 <reportSpecs>
 <reportSpec reportOnlyOnChange="false"
reportName="urn:epcglobal:fmcg:bte:acmewarehouse1receive"

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 51/62

 reportIfEmpty="true">
 <reportSet set="CURRENT" />
 <filterSpec>
 <includePatterns>
 <includePattern>

urn:epc:pat:gid-96:145.12.*
 </includePattern>
 <includePattern>

urn:epc:pat:gid-96:239.30.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true"
includeCount="true" />
 </reportSpec>
 <reportSpec reportOnlyOnChange="false"
reportName="urn:epcglobal:fmcg:bte:acmewarehouse1receive"
 reportIfEmpty="true">
 <reportSet set="ADDITIONS" />
 <filterSpec>
 <includePatterns>
 <includePattern>

urn:epc:pat:gid-96:145.233.*
 </includePattern>
 <includePattern>

urn:epc:pat:gid-96:1.3.*
 </includePattern>
 <includePattern>

urn:epc:pat:gid-96:1.4.*
 </includePattern>
 <includePattern>

urn:epc:pat:gid-96:145.255.*
 </includePattern>
 </includePatterns>
 <excludePatterns />
 </filterSpec>
 <groupSpec />
 <output includeTag="true" includeRawHex="true"
 includeRawDecimal="true" includeEPC="true"
includeCount="true" />
 </reportSpec>
 </reportSpecs>
 <extension />
</ns2:ECSpec>

Figure 34 Example of ECSpec

Which we will use to set up the Filtering & Collection module.

9.4 Setting up the Information Services Module

The Business Event Generator (Figure 5) needs to get the Transaction Event to
serve, which is the Warehouse1DocDoorReceive (with URI
urn:epcglobal:fmcg:bte:acmewarehouse1receive), and the description of it from

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 52/62

the Information Sharing module repository which should be set up using the
information from Table 3 below from :

Business Transaction Attribute
Name

Business Transaction Attribute Value

urn:epcglobal:epcis:mda:ecreport_names bizTransactionIDs_
urn:epcglobal:fmcg:bte:acmewarehouse1receive,
transactionItems_
urn:epcglobal:fmcg:bte:acmewarehouse1receive

urn:epcglobal:epcis:mda:event_name Warehouse1DocDoorReceive
urn:epcglobal:epcis:mda:event_type ObjectEvent
urn:epcglobal:epcis:mda:business_step urn:epcglobal:fmcg:bizstep:receiving
urn:epcglobal:epcis:mda:business_location urn:epcglobal:fmcg:loc:acme:warehouse1
urn:epcglobal:epcis:mda:disposition urn:epcglobal:fmcg:disp:in_progress
urn:epcglobal:epcis:mda:read_point urn:epcglobal:fmcg:loc:45632.Warehouse1DocDoor
urn:epcglobal:epcis:mda:transaction_type urn:epcglobal:fmcg:btt:receiving

Table 3 Master Data (Specifying a Transaction Event)

To set up the above info we will use the Master Data editor whose Business
Transaction tab is shown in Figure 35 below.

Figure 35 Master Data Editor (Specifying a Transaction Event)

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 53/62

9.5 Setting up the Business event generation module

The Business Event Generation module (Figure 5) should be set up to receive
ECReports from the Filtering & Collection module (whose format is already
defined from the ECSpec build above) and set it to serve the Transaction Event
(urn:epcglobal:fmcg:bte:acmewarehouse1receive) defined with the master data
editor illustrated above.

9.6 Process description

Figure 36 below depicts the whole process at a glance which is the following.
ACME gives an order with a specific deliveryID to the Microchip Manufacturer.
With the previous action AspireRfid Connector subscribes to the AspireRfid EPCIS
Repository to retrieve events concerning the specific deliveryID.

Figure 36 Acme computer parts Delivery

The order arrives to ACME’s premises. ACME’s RFID portal (ReadPoint1) reads
the deliveryID and all the products that follow with the help of
WarehouseRfidReader1. AspireRfid ALE filters out the readings and sends two
reports to AspireRfid BEG, one with the deliveryID and one with all the products
tags. AspireRfid BEG collects these reports, binds the deliveryID with the
products tags and sends this event to the AspireRfid EPCIS Repository. The
AspireRfid EPCIS Repository informs the Connector for the incoming event which
in his turn sends this information to ACME’s WMS. When the WMS confirms that
all the requested products were delivered it sends a “transaction finish” message
to the AspireRfid Connector which in his turn unsubscribe for the specific
deliveryID and sends a “transaction finish” to the RFID Repository.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 54/62

Section 10 Filter using Distributed Hash Table (investigations)

In this section, we present a new way of RFID filtering based on the concept of
DHT (distributed hash table), which is currently under investigations. Complete
specifications of these filtering rules will be detailed in the deliverables of WP3.

This kind of filtering aims to offer a mechanism for querying only
useful/concerned readers/databases. For example, let’s consider the case of
study of a distributor with several warehouses spread all over a country. Assume
that warehouses are well organized (products of the same family are grouped,
etc.), and that readers are spread over the warehouses.

With such a system, if we need for instance to draw an inventory of a special
kind of products, we need to query every reader and/or database. Each of them
needs to filter and aggregate data. We thus introduce a certain latency factor
and load the network uselessly. For example, we ask to all nodes to scan all
products but to report only trousers. Readers (or system) may perform a filter to
count only trousers, no T-shirt, no sweat shirt, etc.

If, on the contrary, we assume that data are well organized and directed to a
proper database, based on a DHT mechanism, (every reader/database is seen as
a peer-to-peer node in a DHT based system), we can enhance performance.

The idea here is to assign one (or more) type to all nodes defining the kind of
nodes they are (readers, databases, etc.), or/and the kind of products they are
in charge. For example, databases near trousers in all warehouses are
responsible for the type “trousers”. When data concerning product kind A are
read, they are directed towards databases responsible for A, based on a DHT
direction. We can then group databases responsible for a special kind into a
virtual layer, and allow querying only readers/databases responsible of a well
defined type. Instead of asking to all nodes to filter products to report only
trousers, we ask only to the ones that are responsible for trousers. Others are
kept quiet. Note that a physical database may be responsible for several kinds of
products and thus is mapped to several virtual layers. Figure 37 shows a
projection of nodes by types (triangle, square or round).

Figure 37 Projection into layers

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 55/62

It defines three layers composed by nodes of the same type. If the square nodes
are readers/databases in different warehouses responsible for trousers for
example, all we have to do is to interrogate the second layer (composed only
with square nodes) with broadcast message to perform an inventory, anycast
message to find at least one pair of trousers (if exists), or k-cast to know if the
quantity is sufficient for a command.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 56/62

Section 11 Conclusions

The generation of business events is an essential capability of an RFID
middleware platform so as to be able to rapidly develop and deploy end user
applications. This type of events is a combination of filtered but raw tag readings
with added-on business-related information. This process can transform
meaningless reading data to powerful and valuable information for intelligent
applications and services in the upper layers.

As it has been extensively presented in this deliverable, the role of
programmable filters is essential for providing a stable but customizable platform
to build more complex services based on business events. In this direction, we
defined in this deliverable the core element of this platform through the definition
of the Programmable Filters Specification, its components and examples using
the associated filtering mark-up language (FML). Moreover we have provided the
proof of concept by implementing these components as part of the AspireRFID
middleware which exists in the scope of the Aspire project.

The filtering markup language not only will help in the programmability of the
tool but it will also provide modularity and the possibility of reusing filtering
templates. In this way future developers can start building up new and
interesting filtering policies from previously tested and mature solutions. This
deliverable has presented several examples of how to use the reusable filters,
the contents of their specification and the events currently supported.
Additionally ASPIRE offers an Integrated Development Environment that allows
easy development and definition of the filtering rules. Finally, research studies in
using DHTs in order to enhance the filtering functionalities of an RFID system
have also been provided.

This document is the final version of the deliverable, thus being the updated
version of the specifications that were released by month 14 (M14) of the
project.

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 57/62

Section 12 List of Acronyms

AAU Aalborg University
AIT Athens Information Technology
ALE Application Level Event
API Application Product Interface
ASPIRE Advanced Sensors and lightweight Programmable middleware for

Innovative Rfid Enterprise applications
BEG Business Event Generator
CTIF Center for TelelnFranstrutur
DHT Distributed Hash Table
DoW Description of Work
EPC Electronic Product Code
EPCIS Electronic Product Code Information Services
ERP Enterprise Resource Planning
F&C Filtering and Collection
FML Filter Markup Language
FP Framework Project
HAL Hardware Abstraction Layer
HF High Frequency
HTTP HiperText Transfer Protocol
ICT International Conference on Telecommunications
ID Identification
IDE Integrated Development Environment
INRIA Institut National de Recherche en Informatique et en Automatique
IT Information Technology
IT Instituto de Telecomunicações
iPOJO injected POJO
JMX Java Management Extensions
LLRP Low Level Reader Protocol
MDE Master Data Editor
OBR OSGi Bundle Repository
OSGI Open Service Gateway Initiative
OSI Open System Interconnection
OSS Open Source Software
OW2
PM Person month
POJO Plain Old Java Object
PU Public
RF Radio Frequency
RFID Radio Frequency Identification
RP Reader Protocol
SME Small and Medium Enterprise
SNMP Simple Network Management Protocol
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SVN Subversion
TCO Total Cost of Ownership

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 58/62

TCP Transfer Control Protocol
UHF Ultra High Frequency
UML Universal Markup Language
URI Uniform Resource Identifier
W3C World Wide Web Consortium
WADL Wired Application Description Language
WMS Warehouse Management System
WP Work Package
XML Extensible Markup Language

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 59/62

Section 13 List of Figures

Figure 1: EPCglobal Architecture Framework .. 10
Figure 2 ASPIRE Architecture for Programmability, Configurability and End-to-End
Infrastructure Management .. 11
Figure 3 Wide Business Process/Transactions Example ... 15
Figure 4 Description of Elementary RFID enabled Business Process 16
Figure 5 Complete Programmable Filters ASPIRE solution ... 18
Figure 6 ECSpecs and related fields .. 23
Figure 7 EPCISEvent’s XML schema ... 24
Figure 8 EPCIS Events .. 24
Figure 9 AggregationEvent’s XML schema .. 25
Figure 10 ObjectEvent’s XML schema ... 26
Figure 11 QuantityEvent’s XML schema .. 27
Figure 12 TransactionEvent’s XML schema ... 28
Figure 13 Action types .. 28
Figure 14 Master Data types .. 29
Figure 15 Role of the BEG Configurator and MDE tools .. 31
Figure 16 Creating Event data Sequence .. 35
Figure 17 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.12.*” class 36
Figure 18 An example of ReportSpec for the “urn:epc:pat:gid-96:145.233.*” class 36
Figure 19 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.56.*” class 37
Figure 20 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.12.*” 38
Figure 21 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.233.*”class 38
Figure 22 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.12.*” class 39
Figure 23 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.233.*” class 40
Figure 24 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.19.*” class 41
Figure 25 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.12.*” class 41
Figure 26 Example of a ReportSpec for the “urn:epc:pat:gid-96:145.233.*” class 41
Figure 27 Programmability Tooling .. 43
Figure 28 ECSpec Editor View ... 44
Figure 29 Definition of a transaction in the MDE .. 45
Figure 30 Process defined as a set of EPCIS events .. 46
Figure 31 Master Data Editor (Business Location) - Company Acme owns 2 warehouses
(Location AcmeWarehouse3 is no longer active) ... 47
Figure 32 AspireRFID Architecture .. 48
Figure 33 ECSpec Editor (Object Event) .. 50
Figure 34 Example of ECSpec ... 51
Figure 35 Master Data Editor (Specifying a Transaction Event) .. 52
Figure 36 Acme computer parts Delivery ... 53
Figure 37 Projection into layers .. 54

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 60/62

Section 14 List of Tables

Table 1 Business Transaction ID Attributes ... 30
Table 2 Event fields with Event Types mapping [2] .. 34
Table 3 Master Data (Specifying a Transaction Event) .. 52

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 61/62

Section 15 References and Bibliography

[1] Matthias Lampe, Christian Floerkemeier, “High-Level System Support for

Automatic-Identification Applications”, In: Wolfgang Maass, Detlef Schoder,
Florian Stahl, Kai Fischbach (Eds.): Proceedings of Workshop on Design of
Smart Products, pp. 55-64, Furtwangen, Germany, March 2007.

[2] BEA WebLogic. Understanding the Event, Master Data, and Data Exchange
Services. BEA WebLogic RFID Entersprise Server. [Online] October 12, 2006.
http://e-docs.bea.com/rfid/enterprise_server/docs20/pdf.html.

[3] EPCglobal, “The Application Level Events (ALE) Specification, Version 1.1”,
February. 2008, available at: http://www.epcglobalinc.org/standards/ale

[4] EPCglobal Inc™. Frequently Asked Questions - ALE 1.1. EPCglobal. [Online]
http://www.epcglobalinc.org/standards/ale.

[5] FossTrak Project. FossTrak Project. [Online]
http://www.fosstrak.org/index.html.

[6] EPC Information Services (EPCIS) Specification, Version 1.0.1, September 21,
2007 available at: http://www.epcglobalinc.org/standards/epcis/

[7] EPCglobal Inc™. The EPCglobal Architecture Framework Version 1.2. [Online]
September 10, 2007. http://www.epcglobalinc.org/standards/architecture/.

[8] Application Level Events 1.1(ALE 1.1) Overview, Filtering & Collection WG,
EPCglobal, March 5, 2008 , available at:
http://www.epcglobalinc.org/standards/ale

[9] C.Floerkemeier, C. Roduner, and M. Lampe, RFID Application Development
With the Accada Middleware Platform, IEEE Systems Journal, Vol. 1, No. 2,
December 2007.

[10] C. Floerkemeier and S. Sarma, “An Overview of RFID System Interfaces
and Reader Protocols”, 2008 IEEE International Conference on RFID, The
Venetian, Las Vegas, Nevada, USA, April 16-17, 2008.

[11] Russell Scherwin and Jake Freivald, Reusable Adapters: The Foundation of
Service-Oriented Architecture, 2005.

[12] Panos Dimitropoulos and John Soldatos, ‘RFID-enabled Fully Automated
Warehouse Management: Adding the Business Context’, submitted to the
International Journal of Manufacturing Technology and Management (IJMTM),
Special Issue on: "AIT-driven Manufacturing and Management".

[13] Architecture Review Committee, “The EPCglobal Architecture Framework,”
EPCglobal, July 2005, available at: http://www.epcglobalinc.org.

[14] Achilleas Anagnostopoulos, John Soldatos and Sotiris G. Michalakos,
‘REFiLL: A Lightweight Programmable Middleware Platform for Cost Effective
RFID Application Development’, accepted for publication to the Journal of
Pervasive and Mobile Computing (Elsevier).

[15] Benita M. Beamon, “Supply chain design and analysis: Models and
methods”, International Journal of Production Economics, Vol. 55 pp. 281-
294, 1998

[16] Zhekun Li, Rajit Gadh, and B. S. Prabhu, "Applications of RFID Technology
and Smart Parts in Manufacturing", Proceedings of DETC04: ASME 2004
Design Engineering Technical Conferences and Computers and Information in

Contract: 215417
Deliverable report – WP4 / D4.3b

ID: ASPIRE_D4.3b_V0.5_Public.doc Date: 16 December 2009
Revision: 0.4b Security: Public
 Page 62/62

Engineering Conference September 28-October 2, 2004, Salt Lake City, Utah
USA.

[17] John Soldatos, Nikos Kefalakis, Nektarios Leontiadis, et. al., “Core ASPIRE
Middleware Infrastructure”, ASPIRE Project Public Deliverable D3.4a, Jun
2009, publicly available at:
http://wiki.aspire.ow2.org/xwiki/bin/view/Main.Documentation/Deliverables

[18] Efstathios Mertikas, Nikos Kefalakis and John Soldatos, “Managing Master
Data and Business Events in an RFID Network”, Submitted to the Pervasive
and Mobile Computing Journal (Elsevier), September 2009

[19] Jeremy Landt, The history of RFID, IEEE Potentials, October-November
2005.

[20] Ron Weinstein, RFID: A Technical Overview and Its application to the
enterprise. IT Pro, published by the IT Computer Society.

[21] ASPIRE D2.3b. Architecture specifications for the innovation management
framework, 2009.

[22] ASPIRE D2.2 (End-User) SME Requirements (IT infrastructure, traceability,
Anti-counterfeiting, privacy)

[23] ASPIRE D2.1 Review on methods and tools for concurrent innovation
engineering - Review of State-of-the-Art Middleware, Methods, Tools and
Techniques

[24] ASPIRE, Advanced Sensors and lightweight Programmable middleware for
Innovative Rfid Enterprise applications, Annex I Description of work.

[25] ASPIRE D3.3 Data Collection, Filtering and Application Level Events
[26] ASPIRE D4.3a Programmable filters (FML) specification. Interim version

