
ASPIRE FP7 215417

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the ASPIRE Consortium. Neither

this document nor the information contained herein shall be used, duplicated or
communicated by any means to any third party, in whole or in parts, except with prior written

consent of the ASPIRE consortium.

Collaborative Project

ASPIRE
Advanced Sensors and lightweight Programmable

middleware for Innovative Rfid Enterprise applications

FP7 Contract: ICT-215417-CP

WP2 – Requirements and specifications

Public report - Deliverable

ASPIRE Middleware and
Programmability Specifications

Due date of deliverable: 30/09/2008
Actual Submission date: 30/09/2008

Deliverable ID: WP2/D2.4

Deliverable Title: ASPIRE Middleware and
Programmability Specifications

Responsible partner: Athens Information Technology (AIT)

Main Contributors:

John Soldatos (AIT)
Nektarios Leontiadis (AIT)
Nikos Kefalakis (AIT)
Ioannis Christou (AIT)
Denis Ruffieux (MELEXIS)
Didier Donsez (UJF)
Lionel Touseau (UJF)
Sofyan Mohammad Yousuf (OSI)
Ramiro Samano Robles (IT)
Panos Dimitropoulos (SENSAP)

Estimated Indicative
Person Months: 12

Start Date of the Project: 1 January 2008 Duration: 36 Months

Revision: 1.3
Dissemination Level: RE

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 2/93

Document Information

Document Name: ASPIRE Middleware and

Programmability Specifications
Document ID: WP2/D2.4
Revision: 1.4
Revision Date: 30 September 2008
Author: Athens Information Technology
Security: RE

Approvals

 Name Organization Date Visa

Coordinator Neeli Rashmi Prasad CTIF-AAU 30/09/2008

Technical
Coordinator John Soldatos AIT 30/09/2008

Quality Manager Thomas Christiansen CTIF-AAU 30/09/2008

Reviewers

Name Organization Date Comments Visa

Ramiro Samano
Robles IT 19/09/2008

Humberto Moran Open Source
Innovation (OSI) 22/09/2008

Mathieu DAVID CTIF-AAU 23/09/2008

Document history

Revision Date Modification Authors

0.1 19 May 08 Table of Contents / Structure John Soldatos

0.2 04 July 08 Added: Introduction, Middleware
Specifications Draft

John Soldatos, Nektrarios
Leontiadis, Nikos Kefalakis

0.3 14 July 08 Reader Access Specifications Nektrarios Leontiadis
0.4 16 July 08 F&C Specifications Nikos Kefalakis

0.5 25 July 08 Early High Level Description of the
ASPIRE tools John Soldatos

0.6 10 Sep 08 Information Sharing, BEG, Connector,
IDE & Tools Specifications Nikos Kefalakis

0.7 16 Sep 08 Appendix, Introduction, Additions, John Soldatos, Nikos Kefalakis,

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 3/93

Fine Tuning, Executive Summary,
Aspire Reader Access API

Panos Dimitropoulos, Denis Ruffieux

0.8 17 Sep 08 Revisions, Conclusions, Version Sent
to Reviewers John Soldatos, Nikos Kefalakis

0.9 19 Sep 08
Major Reader Access and minor F&C,
Information Sharing, BEG, Connector,
IDE addition/changes

Nikos Kefalakis

1.0 22 Sep 08 Revisions based on OSI comments John Soldatos
1.1 23 Sep 08 Addition of NFC input Didier Donsez, Lionel Tuseau

1.2 24 Sep 08 Addition of input on ASPIRE Business
Process Management

John Soldatos, Nikos Kefalakis,
Ioannis Christou

1.3 29 Sep 08 Incorporation of comments from
internal review, Revisions on Figures

John Soldatos, Nikos Kefalakis,
Nektarios Leontiadis

1.4 30 Sep 08 Final Version John Soldatos

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 4/93

Table of Contents
Table of Contents ...4
Executive summary..7
1 Introduction...10
2 Middleware Specifications...14

2.1 Relationship to the ASPIRE Architecture...14
2.2 ASPIRE Architecture vs. EPC Global Architecture ...16
2.3 Classification of Middleware Specifications ..17
2.4 Relationship to End-Users (SMEs) Requirements...17
2.5 Middleware Building Blocks and ASPIRE applications18

3 Reader Access Specifications ..20
3.1 Overview..20
3.2 Hardware Abstraction Layer (HAL) ...20

3.2.1 Core Reader ...21
3.2.2 EPC-RP Support...22
3.2.3 EPC-LLRP Support...22
3.2.4 NFC Reader Support ..23

3.3 ASPIRE Low-Cost Reader Specifications ..23
3.4 Reader Access Specifications Requirements overview26

4 Filtering and Collection Specifications ..32
4.1 Overview..32
4.2 F&C Specifications ...34

4.2.1 Supported Fieldnames, Data types, and Formats ..36
Extensions for sensors data ...37

4.2.2 Accessing/Configuring/Managing Tag Memory ..37
4.2.3 Reading Tags - Reading API ..38
4.2.4 Writing to Tags - ALE Writing API...39
4.2.5 Managing Logic Readers - ALE Logical Reader API41
4.2.6 Access Control to F&C Functionalities..42
4.2.7 ALE Management ...42

4.3 ASPIRE ALE API Specifications Requirements overview43
4.3.1 Fieldnames, Data types, and Formats ..43
4.3.2 Tag Memory Specification API (According to EPC ALE)44
4.3.3 Reading API..44
4.3.4 Tag Writing Specification ..45
4.3.5 Logical Reader API ...45
4.3.6 Access Control API ...46
4.3.7 ALE Management ...46

5 Information Sharing Repository and Services Specification47
5.1 Overview..47
5.2 Specification of Information Sharing Data Model..48

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 5/93

5.3 Information Sharing Services Specifications ..49
5.3.1 Capture Operations...49

5.3.1.1 Authentication and Authorization ..49
5.3.1.2 Event Capture ...50
5.3.1.3 Master Data Capture Service..50

5.3.2 Query Operations..50
5.3.2.1 Authentication ...50
5.3.2.2 Authorization ...50
5.3.2.3 Queries for Large Amounts of Data ..50
5.3.2.4 Overly Complex Queries...51
5.3.2.5 Query Framework ...51
5.3.2.6 Error Conditions ..51
5.3.2.7 Predefined Queries for Information Sharing ...51
5.3.2.8 Query Callback Interface ..52

5.3.3 Bindings for Capture and Query Operations...52
5.3.4 Management of Information Sharing Repository and Processes....................52

5.4 Information Sharing Specifications Overview ...53
6 Business Event Generation Specifications ...54

6.1 Overview..54
6.2 BEG Engine Specification..55

6.2.1 BEG to F&C bindings..55
6.2.2 BEG to Information Sharing bindings..55
6.2.3 Access/Collect required Master Data..55
6.2.4 Reports Processing...55
6.2.5 Authentication and Authorization ..55
6.2.6 BEG Management ..55
6.2.7 Graphical User Interface ...56

6.3 BEG Specifications Overview..57
7 Connector Specifications ..58

7.1 Overview..58
7.2 Connector Specifications ..59

7.2.1 Adapter Framework ..59
7.2.1.1 Standard Adapters for Information Exchange – Information Exchange
Semantics ...59
7.2.1.2 Standard interfaces – Application and Data Adapters59
7.2.1.3 Custom tooling for application platform suites ..60
7.2.1.4 Transaction processing adapters..60

7.2.2 Graphical User Interface ...60
7.2.3 Connector to Various Systems ERPs bindings...60
7.2.4 Connector to Various RDBMS ..60
7.2.5 Connector to ASPIRE Information Sharing repository and services...............61
7.2.6 Connector to F&C bindings...61
7.2.7 Authentication and Authorization ..61
7.2.8 Connector Management ...61

7.3 Connector Specifications Overview ...62
8 ASPIRE IDE and Tools Specifications..63

8.1 Overview..63

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 6/93

8.2 Management Console Specifications ...63
8.3 Tooling Specifications ...65

8.3.1 ASPIRE IDE..65
8.3.2 Physical Reader Configuration Editor ...65
8.3.3 Logical Reader Configuration Editor ...65
8.3.4 Reading Specifications Editor ...66
8.3.5 F&C Commands Execution...66
8.3.6 Connector Configurator...66
8.3.7 Master Data Editor (with support for Elementary Business Process
Description) ..66
8.3.8 ASPIRE Business Process Management and Workflow Management Editor
for Composite Business Processes..68
8.3.9 ASPIRE Programmability Engine..69
8.3.10 ASPIRE Tools Summary...70

8.4 Privacy Framework and Tool (in accordance to Deliverable D2.5)71
8.4.1 Compliance with data quality principal (limiting collection of personal data) ..71
8.4.2 Compliance with Data Limitation and Conservation principals72

8.5 ASPIRE IDE Specifications Overview ...73
8.5.1 Management Console Specifications..73
8.5.2 Tooling Specifications Requirement ...73

9 Conclusions ..74
10 - Acronyms..76
11 List of Figures...77
12 List of Tables...78
13 - References and bibliography ..80

A.1 Taxonomy of Warehouses and Containers ...82
A.2 Examples of Elementary Business Processes ...82

A2.1 Receiving ...83
A2.2 Moving within Logical Warehouses..85
A2.3 Order Collection - Pick & Pack...87
A2.4 Order Shipment..90
A2.5 Inventory ..92

A.3 Complex Business Process..93

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 7/93

Executive summary

Among the main objectives of the ASPIRE project (http://www.fp7-aspire.eu) is
to develop a royalty free RFID (Radio Frequency Identification) middleware
platform, along with a range of tools that will enable the flexible and
programmable implementation of RFID solutions. A key prerequisite for the
implementation of such a platform and tools is the technical specifications of the
software modules comprising the ASPIRE middleware and tooling. The purpose of
this deliverable (namely ASPIRE D2.4 titled “ASPIRE Middleware and
Programmability Specifications”) is to illustrate these specifications in order to
serve as a basis for their implementation in the ASPIRE RFID middleware
platform. In devising these specifications the ASPIRE consortium has taken into
account user requirements (established in document D2.2), middleware
requirements and the ASPIRE architecture (illustrated in Deliverables D2.1 and
D2.3), as well as the overall technical, technological and research goals of the
project, as the later are reflected in the ASPIRE Description of Work (DoW)
document.

The specifications contained within this deliverable will be reflected in the
“AspireRfid” open source software (OSS) project, which the ASPIRE consortium
has already setup as an OSS project of the OW2 community. Hence,
specifications established in this document will be gradually implemented within
the forge of the “AspireRfid” project, which is currently accessible at:
http://forge.objectweb.org/projects/aspire/.Note that the specifications
established in this document represent a superset of the features that will be
implemented in the scope of the ASPIRE project. Being an OSS project, ASPIRE
will endeavour to attract competent contributors outside the ASPIRE consortium.
The specifications contained in this deliverable can therefore serve as a guideline
for potential contributors. Note also that this document attempts to prioritize
requirements and specifications on the basis of their criticality for the
functionality of the ASPIRE middleware. Hence, core specifications that are
absolutely essential for the deployment of RFID solutions are prioritized over
other less important features.

We acknowledge that this deliverable cannot provide an exhaustive list of all the
features that might be implemented/supported in the scope of the ASPIRE
project. We cannot rule out the possibility of having this list extended in the
future, especially in the case where external contributors will engage in the
implementation, but also as more SME (Small Medium Enterprises) requirements
are derived from the trials and/or the ASPIRE innovation management framework
process.

The deliverable is structured on the basis of the ASPIRE architecture. The latter
provides a framework for defining the various modules of the ASPIRE middleware
platform. Moreover, it highlights programmability requirements, which are also
addressed by the ASPIRE tools. The ASPIRE architecture identifies the following
main middleware modules for the ASPIRE middleware platform:

http://forge.objectweb.org/projects/aspire/�

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 8/93

• Middleware modules for virtualising/abstracting reader access i.e. enabling
the ASPIRE platform to be flexible in supporting different reader vendors and
types.
• Middleware modules for filtering and collection, which decouple the ASPIRE
middleware platform from the physical readers’ configurations and details, as
well as from how tags are sensed and read. The filtering and collection
middleware produces application level events.
• Middleware modules for generating business events in a configurable and
automated fashion i.e. enabling the ASPIRE middleware to generate business
events on the basis of reports produced by the filtering and collection modules.
• Middleware modules and repositories for storing and managing business
events.
• Middleware modules acting as connectors to legacy IT (Information
Technology) systems such as Enterprise Resource Planning (ERP) systems,
Warehouse Management Systems (WMS), as well as corporate databases.
Note that some of the above modules are prescribed as EPC (Electronic Product
Code) compliant modules i.e. ensuring compliance with a major set of RFID
standards. This is particularly true for specifications relating to reader access and
filtering. However, in-line with the ASPIRE architecture this deliverable introduces
several middleware functions and tools that are not prescribed in existing
standards. Specifically, the specifications contained in this deliverable specify the
following innovative modules and tools:
• A business event generation (BEG) middleware module, which translates

filtered reports into business events in an automatic fashion.
• Management modules enabling the end-to-end management of the whole

RFID infrastructure, comprising both RFID hardware and middleware.
• A set of tools enabling business process management over the ASPIRE

middleware.

Each of the above middleware modules is specified in fair detail in subsequent
sections of this deliverable. Furthermore, special sections of the document are
devoted to the ASPIRE tools comprising tools for configuring logical readers,
managing filters, managing the RFID infrastructure, managing RFID enabled
processes and ultimately supported integrated development of RFID applications.
These tools will be also implemented in the scope of the AspireRfid project.

Overall, the deliverable describes the main capabilities and functionalities of the
ASPIRE middleware and tools. We believe that these functionalities will result into
environments that could ease RFID adoption by Small Medium Enterprises
(SMEs), through facilitating development and deployment of RFID solutions. This
is because the specifications provided in this deliverable consider not only
technical requirements and standards, but also user requirements described in
related ASPIRE Deliverable D2.2 and articulated by the SMEs themselves in the
scope of the various “RFID Information Days” events of the ASPIRE project.
Note that a special paragraph of this deliverable illustrates how the various
middleware modules, address end-user requirements (particularly SME
requirements).

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 9/93

In addition to providing a roadmap for the implementation of middleware and
tools, this deliverables paves the ground way for to the specification and
implementation of the programmability functionalities of the ASPIRE middleware.
In particular, along with the implementation of the various tools, ASPIRE will
endeavour to produce a domain specific language for describing fully fledged
RFID solutions. The introduction of such a language can standardize the
programmability capabilities of the ASPIRE middleware, which will enable third-
parties to build ASRPIE compliant tools.

The tools and functionalities presented in this deliverable, will serve as a basis for
deriving the RFID solution language. Specifically, with a list of middleware
specifications at hand, programmability tasks in WP3 and WP4, can focus on a
specification defining/declaring the structure and characteristics of an RFID
solution. We envisage that the project will define a language comprising
programmable constructs for defining RFID solutions. These programmable
constructs will be defined based on the technical specifications established in this
document. In particular, the programmable constructs must cater for the flexible
configuration of all the features that are described in this document. The
specification of the language falls in the scope of future deliverables.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 10/93

1 Introduction

Among the main objectives of the ASPIRE project is to develop and deliver a
lightweight, royalty-free, programmable, privacy friendly, standards-compliant,
scalable, integrated and intelligent middleware platform that will facilitate low-
cost development and deployment of innovative fully automatic RFID solutions.
In the sequel we briefly discuss the above properties of the ASPIRE middleware,
platform, while at the same time listing ASPIRE activities and deliverables that
boost the realization of these properties:
• Royalty-free: ASPIRE will offer a licensing scheme enabling free use of its

RFID developments. The ASPIRE consortium opts for open-source
developments and has therefore collected and analyzed its needs in terms of
Open Source Licensing. The ASPIRE middleware will be licensed under LGPL
v2 (Lesser General Public License), as illustrated in ASPIRE Deliverable 3.1.

• Lightweight: Contrary to state-of-the-art commercial middleware platforms
which subsume and rely on the functionality of a host of middleware and
database services, the ASPIRE middleware will not be resource intensive.
Please note that an in-depth state-of-the-art review of RFID middleware
platform is contained in ASPIRE Deliverable D2.1, while the lightweight nature
of the middleware has also been established as a requirement from SME
communities in the scope of Deliverable D2.2 (dealing with end-user
requirements). Note also that part (i.e. specific libraries) of the ASPIRE
middleware, will be able to run over low-cost specialized microsystems, which
possess RFID sensing, filtering and communication capabilities. These libraries
will be developed in WP3 and WP5 of the consortium, which deal with the
ASPIRE middleware platform implementation and the ASPIRE low-cost reader
respectively.

• Programmable: The ASPIRE RFID middleware platform will provide solution
developers and integrators with the opportunity of configuring simple
solutions using solution templates and tools. The configuration process will
involve minimal coding, or even no coding at all for simple solutions and/or
applications.

• Intelligent: On top of RFID programmability, the ASPIRE RFID middleware
platform will incorporate intelligence enabling context-analysis and reasoning
over numerous sensors observations.

• Standards-Compliant: The ASPIRE RFID middleware developments will comply
with existing RFID standards, starting from EPC standards (i.e. mainly on
filtering and eventing) for both intra-enterprise and inter-enterprise
applications development. Note that ASPIRE will leverage both EPC standards,
as well as related EPC open-source developments.

• Scalable: The ASPIRE platform will be capable of supporting numerous
massively distributed tags, as most likely required in realistic applications for
the networked enterprise.

• Privacy-Friendly: The ASPIRE middleware will incorporate best practices (e.g.,
minimalist data generation, keeping tags no longer than required, ignoring
tags that are out of an application’s scope) relating to the development of
privacy friendly middleware. Please refer to ASPIRE Deliverable D2.5, which
elaborates on the privacy specifications of the middleware.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 11/93

• Integrated: The ASPIRE platform will offer a complete integrated environment
for specifications, development, integrations and experimentations of the
RFID components and concepts through a concurrent innovation engineering
framework. The exploitation of a novel innovation management framework in
the scope of the ASPIRE framework is currently described and worked out in
ASPIRE Deliverable D2.3.

We expect that this platform will significantly boost the adoption of RFID
technology, especially for SME communities that wish to use RFID as an
innovation vehicle.

The purpose of this deliverable is to provide specifications for the ASPIRE
middleware platform and tools, as well as specifications for the programmability
functionality of the platform. The ASPIRE middleware specifications are fully
aligned with the architecture of the project, which is specified within Deliverable
2.3. In particular, middleware modules specified in the scope of this deliverable,
are included in the overall picture of the ASPIRE middleware architecture. Hence,
this deliverable complements D2.3. Specifically:
• Deliverable D2.3 provide the high-level structuring principles of the

middleware modules that comprise the ASPIRE architecture, while
• Deliverable D2.4 specifies the lower-level details of the ASPIRE middleware

modules and their interactions, as well as tools and programmability features
of the ASPIRE middleware.

Note that the ASPIRE middleware platform takes into account related standards
in the area of reader abstraction, filtering and data collection, as well as business
events. Several specifications are therefore based on the enhancement of the
existing standards (notable EPC standards). In these cases the present
deliverable refers directly to the base standards, while also outlining the
extensions. Nevertheless, even in the case of standards implementations we
underline the specific functionalities to be supported by the ASPIRE middleware,
since:
• In several cases some standards will only be partly implemented within

ASPIRE. This is not a deviation from standards compliance since several
standards include optional features.

• It is important to prioritize crucial functionalities for early implementation over
others less important functionalities.

Furthermore, the present deliverable specifies middleware functionalities that are
not prescribed by current standards. Prominent examples of such modules
include:
• The Business Event Generation module, which facilitate the automatic and

programmable generation of business events.
• The Business Process Management middleware framework, which allows

execution of composite RFID-enabled business processes.
• The Connector modules undertaking the connection with legacy ICT systems.

In addition to the ASPIRE middleware specifications, this deliverable specifies
programmability functionalities, as well as tooling. Programmability features aim
at easing the configuration of ASPIRE solutions. The ASPIRE programmability
functionality will offer to RFID developers and consultants the possibility to

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 12/93

deploy RFID solutions through entering high-level meta-data for a company
(including the business context of its RFID deployments), rather than through
writing significant amounts of low-level programming statements. At the same
time programmability functionalities would also aim at treating personal data as
specified by ePrivacy and other Data Protection Directives. For example, through
algorithms that clean up unnecessary data and maintain principles of data
quality, limitation, and conservation. To this end, this deliverable specifies a
novel tool for privacy-friendliness auditing and enforcement.

At the heart of the ASPIRE programmability, lies an integrated way to specify
company data, business process data, as well as middleware configuration
metadata for the full range of components that comprise an RFID solution. In
particular, ASPIRE programmability will be specified in the form of an XML-based
(Extensible Markup Language) specification language, which is will be easily
amendable by appropriate tools. Based on the above-mentioned specification
language (which is a subject of future WP4 deliverables), the ASPIRE tools will
provide opportunities for configuring, editing and deploying RFID solutions over
the ASPIRE middleware platform. In addition to handling the ASPIRE
programmability specifications in an integrated fashion, ASPIRE will also provide
individual tools for configuring all the middleware modules of the platform (e.g.,
the filtering and collection module, the information sharing module, the reader
access and virtualization module). All these tools will be bundled in a common
Integrated Development Environment (IDE), providing access to all the ASPIRE
tools. The functionality and the design of these tools are also specified in this
document.

Please note that the ASPIRE consortium will open its developments to the open-
source community. The ASPIRE consortium has initiated the “AspireRfid” project
of the OW2 community, which will be accessible at:
http://forge.objectweb.org/projects/aspire/, as a result of ASPIRE Deliverable
D7.4.

It is envisaged that skilful community developers will actively engage in ASPIRE
in order to implement the ASPIRE middleware platform and/or the ASPIRE
Integrated Development Environment (IDE). Therefore, this deliverable should
not be seen as an exhaustive list of functionalities that will be implemented in the
scope of the project. On the contrary it is a specification of features that could be
implemented either within the ASPIRE consortium or based on the involvement of
the open-source community. This deliverable will therefore serve as a basis for
starting and evolving a roadmap of ASPIRE Developments.

This deliverable is structured as follows:
• Section 2 introduces the Middleware Specifications and especially the

relationships between each of its modules in the scope of the ASPIRE
architecture. It also outlines how the different middleware blocks address
identified SMEs requirements with respect to RFID deployment. Moreover, it
illustrates how the ASPIRE middleware components can be used for
deployments of varying scale and complexity.

http://forge.objectweb.org/projects/aspire/�

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 13/93

• Section 3 sets out the various Reader Access Specifications which consists of
the Hardware Abstraction Layer (HAL), the EPC-RP readers, the EPC-LLRP
readers, the HF Readers, the ASPIRE Low-Cost Reader, as well as popular
NFC readers (phones, mass-market products such as Nabaztag/tag, …). This
section is influenced by related EPC reader access standards (notably EPC-RP,
EPC-LLRP).

• Section 4 specifies the middleware module, which is of the top importance for
RFID deployments, namely the Filtering and Collection Specifications. This
includes specifications for filtering sensor streams, reading data from logical
readers, writing data to tags, managing logical readers, as well as regulating
access to readers and tags.

• Section 5 focuses on the Information Sharing Repository and Services Specification,
which describes the ASPIRE Information Sharing repository as a repository of
business events, along with a set of interfaces for accessing these events in
both a synchronous and asynchronous fashion.

• Section 6 exhibits the Business Event Generation Specifications, which consists of
operations that collect the static company data (also called master Data),
process the delivered tag sequences, and ultimately populate the information
sharing repository in a configurable and automatic fahsion. The section
focuses also on the interfaces between the BEG and F&C modules.

• Section 7 introduces the Connector Specifications, which refers to the adapter
framework for interfacing the RFID middleware system to the various corporate
RDBMS (Relational Database Management Systems) and/or other enterprise
systems (such as ERP (Enterprise Resource Planning) systems).

• Section 8 presents the ASPIRE IDE and Tools Specifications, which consist of the
Integrated Development Environment, the management console tool, the
readers configuration tool, the logical reader configuration tool, the filtering
specifications editor, the F&C commands execution tool, the company/master
data editor tool, the connector operations tool and finally the workflow
management editor tool. In this section the novel ASPIRE business processes
management concept is also introduced, along with an innovative privacy
auditing tool.

Finally at the Appendix A we set out examples of business events for common
elementary warehouse management processes such as receiving, moving within
Logical Warehouses, order collection, pick & pack, order shipment and inventory.
These events exemplify the ASPIRE business process management framework,
through illustrating the notion of elementary RFID-enabled business processes,
as well as how they can be combined into composite ones.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 14/93

2 Middleware Specifications

2.1 Relationship to the ASPIRE Architecture

The ASPIRE middleware platform aims at providing an effective method for SMEs
to deploy RFID with a significantly lower entry cost and without the need to
engage extensively with low-level middleware. In order for the middleware to
accomplish this target, it should be designed and built in a way transparent to
end-users. This transparency will enable end-users and legacy enterprise
systems to exploit the services of the RFID sensor system in a non-obtrusive
manner. The miscellaneous components of this black box should be as much
aligned as possible to the standards so that that this middleware will not end up
as another proprietary solution.

The high level architecture of the middleware is depicted in the following Figure 1.
A figure depicting the main middleware building blocks of the architecture using
UML 2.0 Component diagram notation is also provided (Figure 2).

EP
C

 R
P

In

te
rfa

ce
E

P
C

 L
LR

P

In
te

rfa
ce

H
A

L
In

te
rfa

ce

H
A

L
In

te
rfa

ce
H

A
L

In
te

rfa
ce

H
A

L
In

te
rfa

ce
H

A
L

In
te

rfa
ce

H
A

L
In

te
rfa

ce

H
A

L
In

te
rfa

ce

Figure 1: Overview of the ASPIRE Middleware Architecture

Each node in this figure represents a hierarchical level of functionality, starting
from the hardware level, and provides a functional abstraction to a conceptually
lower hierarchical level. Within each node, the corresponding specification that
will be adopted is stated, whenever there is one available.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 15/93

Figure 2: ASPIRE Components

The conceptual hierarchy that is imposed in the middleware architecture starts
from the hardware level, which contains all the required hardware with its
proprietary APIs. At a higher level the hardware abstraction layer (HAL) is
introduced, which hides the proprietary communication aspects of the hardware
from the higher levels. The event level utilizes the abstraction provided by the
HAL and processes the streams of data from the hardware level [1]. The
outcome of this process is information about low level events.

The low level events though lesser than the raw RFID reads, they are significant
in amount and do not provide high level – or business level – information. The
role of this additional filtering and business eventing layer is handled by the
Filtering and Collection and the Business Events Generator (BEG) component.
These two components act in a complementary manner transforming the lower
level events into business events. This transformation is only possible with the
provision of additional metadata, which are appropriately handled by BEG.

This information (i.e. business events) is then forwarded to a higher hierarchical
level, where it is consumed by the Information System level (IS). The IS level
comprises a repository (i.e. a database) which aggregates events received by the

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 16/93

lower levels, applies additional business logic and stores business information,
which could then be conveyed to the company’s enterprise IT systems (e.g.,
Warehouse Management Systems (WMS), Enterprise Resource Planning (ERP)
systems and corporate databases). Hence, well-defined connectors should drive
the integration of information sharing repositories with enterprise business
systems. The connectors are also in charge of exchanging information between
the IS repositories and the business systems using data-centric (e.g., direct data
access) and/or messaging mechanisms (e.g. EDI, XML messaging, Web Services)
mechanisms. Moreover, in the scope of open loop systems this information can
provided to other business partners, through either the enterprise systems or the
information sharing repositories.

Apart from this functional plane of the architecture, there is management plane
which manages and orchestrates the subsequent components. The management
plane ensures that the middleware components comprising an ASPIRE system
operate appropriately, while at the same time providing functionality for runtime
management of the modules (e.g., starting, stopping, deploying and
(re)configuring components).

Overall, the middleware specifications prescribed in this deliverable relate to and
complement the ASPIRE architecture. The later drives the integration, interfacing
and interaction of middleware modules in the scope of a unified and coordinated
distributed software system. Note that ASPIRE architecture is thoroughly
presented in ASPIRE Deliverable D2.3. An interim (preliminary) version of the
ASPIRE architecture has already been provided in the scope of Deliverable D2.3a.
Note that the architecture addresses the most common requirements for
Automatic Identification Applications [10].

Under this prism, the following chapters, drill down to the various architectural
nodes and specify their main functionalities. For each specification we provide a
summary along with its reason of existence, while at the same time outlining its
critically for the AspireRfid implementation roadmap.

2.2 ASPIRE Architecture vs. EPC Global Architecture
According to the ASPIRE Description of Work, the ASPIRE middleware will pursue
compatibility with EPCglobal [17] architecture and related middleware
specifications. Specifically, ASPIRE will take into account and pursue compliance
with the EPC-RP [3], EPC-LLRP [4], EPC-ALE [2], [19] and EPC-IS [8]
specifications. At the same time however, ASPIRE will introduce a range of
unique middleware components and tools that are not prescribed in any
EPCglobal specifications or other standards. These components are prescribed
and implemented as part of the ASPIRE research work. Specifically, ASPIRE will
develop the novel components that extend or are beyond the remit of EPC
specifications:
• The ASPIRE business event generator a configurable component operating as

a capture application that can turn raw RFID data to business events.
• The ASPIRE connectors architecture, which specified basic connectivity of the

middleware platform with legacy IT applications (e.g., ERPs and databases).

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 17/93

• The ASPIRE management infrastructure and applications, which enables end-
to-end management of all the servers and elements of the middleware
platform.

• The ASPIRE Tools and Integrated Development Environment that enable
visual end-to-end development and deployment of RFID solutions over the
ASPIRE middleware platform.

• The ASPIRE Business process management framework, which allows for
creating and managing RFID-enabled processes.

2.3 Classification of Middleware Specifications
The ASPIRE Middleware specifications can be clustered into the following
categories:
• Specifications for reader access and reader virtualization, presented in Section

 3. These specifications deal with vendor independent access to readers, which
allows the ASPIRE middleware to be used with HF readers, UHF readers, from
multiple vendors including the ASPIRE low-cost reader developed in WP5 of
the project. Note also that deliverable D3.2 provides more information on the
reader and tags virtualizations solutions currently implemented in the ASPIRE
middleware.

• Specifications for filtering and collection, which decouples RFID applications
from knowing the details of the physical layer, while also providing
functionality for obtaining filtered RFID data. These specifications are
presented in section 4.

• Specifications for business events generation, which add business context to
filtered RFID sensor streams. The specifications are presented in section 6.

• Specifications for information sharing, which describe the operation and
functionalities of the ASPIRE business events repositories are presented in
section 5.

Each one of these categories is analyzed in a distinct chapter. Following the
specification of the main middleware modules, we also provide programmability
specifications (as part of the ASPIRE tools), which we link them to the capabilities
of the ASPIRE IDE.

2.4 Relationship to End-Users (SMEs) Requirements
By and large the specifications detailed in this deliverable must lead in the
implementation of a middleware platform that could greatly facilitate end-users
in general and SMEs in particular to easily deploy RFID solutions. To this end, the
presented specifications take into account SME’s requirements illustrated in end-
user workshops (“information days”), as well as Deliverable D2.2, as follows:

End-users SMEs
Requirement

Related ASPIRE Middleware or Tool
Specification

Lightweight Nature Exploitation of lightweight containers (OSGi and
Spring illustrated in deliverable D2.3b)

Integration with Legacy
Systems

ASPIRE Connectors Specification (see Connector
Specifications), enabling the ASPIRE interfacing with
legacy IT systems and corporate databases

Lower Integration Effort ASPIRE Tools and Business Process Management (see

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 18/93

and Consulting Costs ASPIRE IDE and Tools Specifications), to facilitate
development, deployment and integration

Bar-Code Support Part of ASPIRE Tag Data Translation Implementation
(see Deliverable D3.2)

Reader Vendor
Independence

Specification and implementation of ASPIRE reader
access specifications (see Reader Access Specifications
section and Deliverable D3.2).

Minimal Maintenance
Costs

Specification of ASPIRE end-to-end management
functionality (see Management Console Specifications)

Secure Access to RFID
functionalities

F&C Access Control API (see Filtering and Collection
Specifications)

Management of SME
Business Processes;
Innovating with RFID

ASPIRE Business Process Management Framework
and Related Workflow Tools (see sub-section Business
Process Management and Workflow Management Editor for
Composite Business Processes)

Privacy Friendliness
(especially for consumer
related deployment)

ASPIRE Privacy Tools (see ASPIRE IDE and Tools
Specifications)

Table 1: SME requirements and related ASPIRE middleware or Tools Specifications

Note that the above SME requirements are addressed not only in D2.4, but also
in other related deliverables of the ASPIRE project.

2.5 Middleware Building Blocks and ASPIRE applications
Among the main objectives of the ASPIRE project is to produce a generic and
configurable middleware platform, which could support a multitude of RFID
deployments, with particular emphasis on SME related deployments. Hence, the
middleware specified in this deliverable is designed to support RFID applications,
pilots and deployments of varying functionality and scale.

As a primary target the ASPIRE middleware blocks defined in this document are
not aimed at supporting large scale “open loop” systems and deployments,
similar to those developed and trialled by Wall-Mart and the U.S Department of
Defense (DoD). Rather ASPIRE’s primary target are smaller scale solutions
covering a wide range of asset tracking and inventory management scenarios, as
well as other ROI (return-on-investment) generating case studies. These target
case studies focus on very specific business problems, which an RFID enabled
system, can solve even within a single enterprise. A main characteristic of these
smaller scale deployments is that tracking, traceability and identification occur
within a warehouse or a single supply chain. Note that these smaller scale
solutions are in-line with most RFID vendor initiatives worldwide, which are
gradually refocusing their strategies in order to address both large scale
deployment and smaller-scale opportunities. ASPIRE envisages that small
applications (i.e. closed loop islands) could one day become integrated into larger
scale open loop systems.

Depending on the scale and target goals of their RFID deployment middleware
developers and RFID consultants should prioritize the adoption and use of

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 19/93

ASPIRE middleware modules based on the scale of the target application. Large
scale open loop solutions must pay emphasis on implementing the full range of
middleware components described in this deliverables. On the other hand smaller
scale closed loop systems must prioritize the Filtering and Collection (F&C),
reading and tag virtualization components (defined in ASPIRE D3.2). Moreover,
for some very simple systems our experience shows that custom filters over a
reader access solution for the target hardware could provide a rapid and
acceptable solution. Table 2 presents the middleware building blocks that we
envisaged as mandatory for various application categories.

Application
Type /
Middleware
Block

HAL (see
Reader Access
Specifications)

Reader
Access (see
Reader Access
Specifications)

F&C (see
Filtering and
Collection
Specifications)

Business Events
(see Information
Sharing Repository
and Services
Specification,
Business Event
Generation
Specifications

Simple Yes Recommended Recommended No
Simple Closed
Loop

Yes Yes Recommended No

Complex
Closed Loop

Yes Yes Yes Recommended

Open Loop Yes Yes Yes Yes
Table 2: ASPIRE Middleware Building Blocks for various application categories

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 20/93

3 Reader Access Specifications

3.1 Overview

The ASPIRE hardware components are the main sources of data of an ASPIRE
middleware system. These hardware components will mainly be RFID readers
and possible other auxiliary sensors (e.g., for sensing physical quantities). The
specifications defined in this section deal with the interfacing to RFID hardware
components and make the ASPIRE middleware capable of communicating using
standardized messages. In particular, ASPIRE is reader agnostic through
supporting the following specifications:
• EPCglobal EPC-RP (Reader Protocol)
• EPCglobal EPC-LLRP (Low-level Reader protocol)

In addition we provide information about the way non-compliant devices
communicate with the ASPIRE middleware and about the methods of interaction
between the middleware and the ASPIRE Low Cost reader (which is prototyped in
WP5 of the project).

Note that we capitalize on existing standards for solving the reader virtualization
problem (i.e. to achieve hardware vendor independence), as also illustrated in
Deliverable D3.2.

3.2 Hardware Abstraction Layer (HAL)

The role of this layer is to unify the way the ASPIRE middleware interacts with
the RFID readers from multiple vendors that support varying protocols. This is
based on the introduction of a hardware abstraction layer (HAL) and the
provision of a fixed instruction set to upstream middleware layers which consume
RFID readings from the hardware [12].

Specifications that satisfy the need for a norm at this level are the EPCglobal
Reader Protocol (RP), the EPCglobal Lower Level Reader Protocol (LLRP). These
protocols define the standard bindings through witch an application can send
messages in a standardized format.

The methods of communication between the HAL and the hardware itself vary,
depending on the hardware vendor and it may require a serial connection, an
Ethernet connection, etc. The protocols of communication may also vary from a
raw TCP (Transmission Control Protocol) connection, to SSL (Secure Sockets
Layer) and HTTP (Hypertext Transfer Transport Protocol). The same will apply for
the command and message encodings, which may be text, XML or binary.

The following figure gives an overview of the HAL architecture.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 21/93

Figure 3: HAL Architectural Overview

The Hardware Abstraction (Figure 4) defines the interface between the HAL, the
F&C server, the Reader Core (3.2.1) or any other application using the HAL. It
standardises access to various readers and simulators of readers. This allows
uniform usage. The readers and simulators become interchangeable because the
code specific to the reader is part of the HAL and not of the application. The
implementations of the Hardware Abstraction interface are divided into multiple
modules, one for the simulators and one for each reader manufacturer. A module
can contain one or multiple reader controllers.

X LLRP
READER
FossTrak

(Virtual)
READER

EPC RP
READER

BRI (Intermec)
READERH

A
L

In
te

rfa
ce

Mach1 (Impinj)
READERH

A
L

In
te

rfa
ce

Serial
READERH

A
L

In
te

rfa
ce

X Protocol
READERH

A
L

In
te

rfa
ce

E
P

C
 R

P

In
te

rfa
ce

EP
C

 L
LR

P

In
te

rfa
ce

H
A

L
In

te
rfa

ce

Filtering &
Collection

Layer

EPC ALE
Server

ASPIRE
Low Cost
READER

Reader
Core
Proxy

H
A

L
In

te
rfa

ce

FossTrak
(Virtual)

READER

H
A

L
In

te
rfa

ce

Figure 4: ASPIRE HAL Connections

3.2.1 Core Reader

In order to transform non EPC Reader Protocol readers into compliant readers we
are using a core reader application, which is used (as shown in Figure 4) as a
mediator between a reader supporting protocol “X” and the corresponding F&C
Reader Protocol Interface. By deploying the appropriate HAL module at the
Reader Core we make whatever reader compliant to RP. Every reader with an
implementation of the Hardware Abstraction interface can be controlled over the
Reader Protocol.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 22/93

The core reader support TCP and HTTP for transporting reader protocol
messages, while the message content can be either XML or Text. In addition, it
support synchronous and asynchronous messaging (through the reader’s protocol
Notification Channels mechanisms). Furthermore, support for other reader
protocol characteristics, such as triggers, data selectors must be provided.

3.2.2 EPC-RP Support
The Reader Protocol standard [4] is defined by EPCglobal and provides a high-
level interface of interaction between a middleware and a compliant RFID device.
The interaction is defined by the combination of the formatting of the exchanged
messages with the underlying communication protocol used to exchange these
messages. The parameters of the interaction are defined through a standardized
handshaking procedure each time a communication channel needs to be
established. The EPCglobal Reader Protocol standard version 1.1 will be
supported by the Aspire middleware [4]. It have been currently implemented in
the scope of Deliverable D3.2 and will be incorporated in the AspireRfid
codebase.

3.2.3 EPC-LLRP Support

The Low Level Reader Protocol standard [3] is also defined by EPCglobal and
provides a low level interface for interaction between a middleware and a
compliant RFID device. It is called low-level because it provides control of RFID
air protocol operation timing and access to air protocol command parameters.
The design of this interface recognizes that in some RFID systems, there is a
requirement for explicit knowledge of RFID air protocols and the ability to control
Readers that implement RFID air protocol communications. It also recognizes
that coupling control to the physical layers of an RFID infrastructure may be
useful for the purpose of mitigating RFID interference.

LLRP is an application layer protocol and does not provide retransmission, or
reordering facilities. State consistency between the Client and the Reader is
critical for the correct functioning of the system. Using LLRP messages, the Client
updates the Reader state, which includes Reader configuration parameters,
dynamically created data structures (e.g., ROSpecs, AccessSpecs, etc), and
possibly vendor-defined data. For this reason, LLRP requires acknowledgements
for the client to Reader transactions – this provides a fail-safe mechanism at the
LLRP layer to cope with network error situations. Also, to cope with intermittent
connections, a Client can request a Reader's configuration state to confirm that a
Reader's state is consistent with the Client after the Client reconnects. The
Reader-to-Client messages are primarily reports, status notifications or keep-
alives. The Aspire middleware will support the EPCglobal Low Level Reader
Protocol standard version 1.0.1 [3]. It have been currently implemented in the
scope of Deliverable D3.2 (based on the LLRP toolkit [9]) and will be
incorporated in the AspireRfid codebase.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 23/93

3.2.4 NFC Reader Support
NFC Forum1 defines specifications for Near-Field Communications (NFC)2
applications such as product information, smart posters, discount vouchers,
ticketing and payment. The specification covers only the list of supported RFID
tags standards and products3 and the information stored in the tags. The forum
has not yet defined an architecture (similar to the EPCglobal) one to integrate
NFC information in company information systems. JCP has specified an API for
contactless communications (JSR 2574). This API enables to develop J2ME
applications using NFC tags.
Since the NFC had already met the mass market in Japan5 and will probably
meet it in developed countries67 in the next years, NFC phones should be
supported by the Aspire middleware. NFC phones could be integrated in Aspire as
readers compliant with the EPCGlobal Reader Protocol standard version 1.1.
Moreover, NFC phones could query an ONS (Object Naming Service)
implementation using Web services or RESTFul services.

3.3 ASPIRE Low-Cost Reader Specifications

The RFID reader that is being developed in the project is low-cost and equipped
with lightweight middleware. It will provide appropriate subsets of the RP and
LLRP protocols. The Aspire middleware will interact with this device through this
interface and will exchange standardized messages. In particular, the ASPIRE
reader/middleware interface (for the low-cost reader) will support LLRP, RM
(Reader Management), DCI (Discovery Configuration and Initialization), and
optionally RP messages, within the context of the EPC standards. The main
procedures (messages) of each protocol that have an influence on the desired
interface are listed in the sequel:

• The ASPIRE Low-cost reader will support the following Low level reader
protocol primitives:

o GET_READER_CAPABILITIES
o GET_READER_CAPABILITIES_RESPONSE
o ADD_ROSPEC
o ADD_ROSPEC_RESPONSE
o DELETE_ROSPEC
o DELETE_ROSPEC_RESPONSE
o START_ROSPEC
o START_ROSPEC_RESPONSE
o STOP_ROSPEC
o STOP_ROSPEC_RESPONSE
o ENABLE_ROSPEC

1 http://www.nfc-forum.org
2 http://java.sun.com/developer/technicalArticles/javame/nfc/
3 ISO/IEC 14443A, ISO/IEC 14443 B, Sony FeliCa.
4 http://jcp.org/en/jsr/detail?id=257 is led by Nokia which delivers it in its J2ME SDKs
5 20 millions FeliCa phones mi-2007 and 40 millions mi-2008
6 Frost & Sullivan (March 07) : “One third of all mobile phones will be NFC-equipped in a span of three
to five years”
7 Strategy Analytics (September 06): “Mobile phone-based contactless payments will facilitate over
$36 billion of worldwide consumer spending by 2011”.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 24/93

o ENABLE_ROSPEC_RESPONSE
o DISABLE_ROSPEC
o DISABLE_ROSPEC_RESPONSE
o GET_ROSPECS
o GET_ROSPECS_RESPONSE
o ADD_ACCESSSPEC
o ADD_ACCESSSPEC_RESPONSE
o DELETE_ACCESSSPEC
o DELETE_ACCESSSPEC_RESPONSE
o ENABLE_ACCESSSPEC
o ENABLE_ACCESSSPEC_RESPONSE
o DISABLE_ACCESSSPEC
o DISABLE_ACCESSSPEC_RESPONSE
o GET_ACCESSSPECS
o GET_ACCESSSPECS_RESPONSE
o CLIENT_REQUEST_OP
o CLIENT_REQUEST_OP_RESPONSE
o GET_REPORT
o RO_ACCESS_REPORT
o KEEPALIVE
o KEEPALIVE_ACK
o READER_EVENT_NOTIFICATION
o ENABLE_EVENTS_AND_REPORTS
o ERROR_MESSAGE
o GET_READER_CONFIG
o GET_READER_CONFIG_RESPONSE
o SET_READER_CONFIG
o SET_READER_CONFIG_RESPONSE
o CLOSE_CONNECTION
o CLOSE_CONNECTION_RESPONSE
o CUSTOM_MESSAGE

Figure 5 presents an example about LLRP support in the ASPIRE low-cost reader.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 25/93

Figure 5: Example of LLRP procedures to be supported by the ASPIRE low-cost reader
• The ASPIRE Low-cost reader will support the following groups of

 Reader Management primitives:
o ReaderDevice
o NotificationChannel
o AlarmChannel
o ReadPoint
o AntennaReadPoint
o Source Object
o Trigger Object
o IOPort Object
o EdgeTriggeredAlarmControl
o TTOperationalStatusAlarmControl

• The ASPIRE Low-cost reader will support the following groups of the

Reader protocol primitives:
o Object ReaderDevice
o Object Source

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 26/93

o Object TagFieldValue
o Object ReadPoint
o Object Trigger
o Object TagSelector
o Object CommandChannel
o Object NotificationChannel
o Object DataSelector
o Enumeration Objects
o Object TagField

As already outlined the low-cost reader interface will also provide support for the
emerging DCI (Discovery Configuration and Initialization) standard.

3.4 Reader Access Specifications Requirements overview

The following tables summarizes the ASPIRE Reader Access specifications, which
are selected and prioritized among the multitude of specifications detailed in [3]
and [4]. Implementation priority values from 1 to 5 with 5 being of most
importance. Note that these values concern the relative implementation priorities
within the ASPIRE project.

1.1 EPCglobal RP specification [4] requirements
(prioritized for implementation in AspireRfid) Applied to Priority

1.1.1 Reader Device interface
Reader Core, F&C

and Low-cost
reader

4

1.1.2 Reader Device commands
Reader Core, F&C

and Low-cost
reader

4

1.1.3 Source interface
Reader Core, F&C

and Low-cost
reader

4

1.1.4 Source commands
Reader Core, F&C

and Low-cost
reader

4

1.1.5 Triggers interface
Reader Core, F&C

and Low-cost
reader

3

1.1.6 Trigger commands
Reader Core, F&C

and Low-cost
reader

3

1.1.7 Tag Selectors interface
Reader Core, F&C

and Low-cost
reader

3

1.1.8 Events interfaces Reader Core and
F&C 4

1.1.9 Notification and Command Channels interfaces
Reader Core, F&C

and Low-cost
reader

4

1.1.10 Notification Channel commands
Reader Core, F&C

and Low-cost
reader

4

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 27/93

1.1.11 Data Selectors interface
Reader Core, F&C

and Low-cost
reader

4

1.1.12 Data Selector commands
Reader Core, F&C

and Low-cost
reader

4

1.1.13 Tad Selector commands
Reader Core, F&C

and Low-cost
reader

4

1.1.14 Tag Fields and Tag Field Values interfaces
Reader Core, F&C

and Low-cost
reader

4

1.1.15 Tag Field and Tag Field Value commands
Reader Core, F&C

and Low-cost
reader

4

1.1.16 Read Point interface
Reader Core, F&C

and Low-cost
reader

4

1.1.17 Read Point commands
Reader Core, F&C

and Low-cost
reader

4

1.1.18 EventType enumeration interface
Reader Core, F&C

and Low-cost
reader

4

1.1.19 TriggerType enumeration interface
Reader Core, F&C

and Low-cost
reader

4

1.1.20 FieldName enumeration interface
Reader Core, F&C

and Low-cost
reader

4

1.1.21 PredefinedTagFieldName enumeration interface
Reader Core, F&C

and Low-cost
reader

2

1.1.22 Error Handling Reader Core and
F&C 4

1.1.23 standard message and Transport Bindings
Reader Core, F&C

and Low-cost
reader

3

Table 3: ASPIRE middleware specifications for EPC-RP support

1.2 EPCglobal LLRP specification requirements[3]
(prioritized for implementation in AspireRfid) Applied to Priority

1.2.1 GET_READER
CAPABILITIES

Reader Core, F&C
and Low-cost

reader
4

1.2.2 GET_READER
CAPABILITIES RESPONSE

Reader Core, F&C
and Low-cost

reader
4

1.2.3 ADD_ROSPEC
Reader Core, F&C

and Low-cost
reader

4

1.2.4 ADD_ROSPEC_RESPONSE
Reader Core, F&C

and Low-cost
reader

4

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 28/93

1.2.5 DELETE_ROSPEC
Reader Core, F&C

and Low-cost
reader

4

1.2.6 DELETE_ROSPEC
RESPONSE

Reader Core, F&C
and Low-cost

reader
4

1.2.7 START_ROSPEC
Reader Core, F&C

and Low-cost
reader

4

1.2.8 START_ROSPEC
RESPONSE

Reader Core, F&C
and Low-cost

reader
4

1.2.9 STOP_ROSPEC
Reader Core, F&C

and Low-cost
reader

4

1.2.10 STOP_ROSPEC
RESPONSE

Reader Core, F&C
and Low-cost

reader
4

1.2.11 ENABLE_ROSPEC
Reader Core, F&C

and Low-cost
reader

4

1.2.12 ENABLE_ROSPEC
RESPONSE

Reader Core, F&C
and Low-cost

reader
4

1.2.13 DISABLE_ROSPEC
Reader Core, F&C

and Low-cost
reader

4

1.2.14 DISABLE_ROSPEC
RESPONSE

Reader Core, F&C
and Low-cost

reader
4

1.2.15 GET_ROSPECS
Reader Core, F&C

and Low-cost
reader

4

1.2.16 GET_ROSPECS
RESPONSE

Reader Core, F&C
and Low-cost

reader
4

1.2.17 ADD_ACCESSSPEC
Reader Core, F&C

and Low-cost
reader

4

1.2.18 ADD_ACCESSSPEC
RESPONSE

Reader Core, F&C
and Low-cost

reader
4

1.2.19 DELETE_ACCESSSPEC
Reader Core, F&C

and Low-cost
reader

4

1.2.20 DELETE_ACCESSSPEC
RESPONSE

Reader Core, F&C
and Low-cost

reader
4

1.2.21 ENABLE_ACCESSSPEC
Reader Core, F&C

and Low-cost
reader

4

1.2.22 ENABLE_ACCESSSPEC
RESPONSE

Reader Core, F&C
and Low-cost

reader
4

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 29/93

1.2.23 DISABLE_ACCESSSPEC
Reader Core, F&C

and Low-cost
reader

4

1.2.24 DISABLE_ACCESSSPEC
RESPONSE

Reader Core, F&C
and Low-cost

reader
4

1.2.25 GET_ACCESSSPECS
Reader Core, F&C

and Low-cost
reader

4

1.2.26 GET_ACCESSSPECS
RESPONSE

Reader Core, F&C
and Low-cost

reader
4

1.2.27 CLIENT_REQUEST_OP
Reader Core, F&C

and Low-cost
reader

4

1.2.28 CLIENT_REQUEST_OP
RESPONSE

Reader Core, F&C
and Low-cost

reader
4

1.2.29 GET_REPORT
Reader Core, F&C

and Low-cost
reader

4

1.2.30 RO_ACCESS_REPORT
Reader Core, F&C

and Low-cost
reader

4

1.2.31 KEEPALIVE
Reader Core, F&C

and Low-cost
reader

4

1.2.32 KEEPALIVE_ACK
Reader Core, F&C

and Low-cost
reader

4

1.2.33 READER_EVENT
NOTIFICATION

Reader Core, F&C
and Low-cost

reader
4

1.2.34 ENABLE_EVENTS_AND
REPORTS

Reader Core, F&C
and Low-cost

reader
4

1.2.35 ERROR_MESSAGE
Reader Core, F&C

and Low-cost
reader

4

1.2.36 GET_READER_CONFIG
Reader Core, F&C

and Low-cost
reader

4

1.2.37 GET_READER_CONFIG
RESPONSE

Reader Core, F&C
and Low-cost

reader
4

1.2.38 SET_READER_CONFIG
Reader Core, F&C

and Low-cost
reader

4

1.2.39 SET_READER_CONFIG
RESPONSE

Reader Core, F&C
and Low-cost

reader
4

1.2.40 CLOSE_CONNECTION
Reader Core, F&C

and Low-cost
reader

4

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 30/93

1.2.41 CLOSE_CONNECTION
RESPONSE

Reader Core, F&C
and Low-cost

reader
4

1.2.42 CUSTOM_MESSAGE
Reader Core, F&C

and Low-cost
reader

4

Table 4: ASPIRE middleware specifications for EPC-LLRP support

1.3 EPCglobal RM specification requirements Applied to Priority

1.3.1 Reader Device interface Reader Core and
Low-cost reader 3

1.3.2 Reader Device commands Reader Core and
Low-cost reader 3

1.3.3 Source interface Reader Core and
Low-cost reader 3

1.3.4 Source commands Reader Core and
Low-cost reader 3

1.3.5 Notification Channel interface Reader Core and
Low-cost reader 3

1.3.6 Notification Channel commands Reader Core and
Low-cost reader 3

1.3.7 Alarm Channel interface Reader Core and
Low-cost reader 3

1.3.8 Alarm Channel commands Reader Core and
Low-cost reader 3

1.3.9 Read Point interface Reader Core and
Low-cost reader 3

1.3.10 Read Point commands Reader Core and
Low-cost reader 3

1.3.11 Antenna Read Point interface Reader Core and
Low-cost reader 3

1.3.12 Antenna Read Point commands Reader Core and
Low-cost reader 3

1.3.13 Triggers interface Reader Core and
Low-cost reader 3

1.3.14 Trigger commands Reader Core and
Low-cost reader 3

1.3.15 IO Port interface Reader Core and
Low-cost reader 3

1.3.16 IO Port commands Reader Core and
Low-cost reader 3

1.3.17 Alarm Control interface Reader Core 3

1.3.18 Alarm Control commands Reader Core 3

1.3.19 Edge Trigger Alarm Control interface Reader Core and
Low-cost reader 3

1.3.20 Edge Trigger Alarm Control commands Reader Core and
Low-cost reader 3

1.3.21 TT Operational Status Alarm Control interface Reader Core and
Low-cost reader 3

1.3.22 TT Operational Status Alarm Control commands Reader Core and
Low-cost reader 3

1.3.23 Alarm interface Reader Core 3

1.3.24 Alarm commands Reader Core 3

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 31/93

1.3.25 Free Memory Alarm interface Reader Core 3

1.3.26 Free Memory Alarm commands Reader Core 3

1.3.27 Failed Write Alarm interface Reader Core 3

1.3.28 Failed Write Alarm commands Reader Core 3

1.3.29 Failed Erase Alarm interface Reader Core 3

1.3.30 Failed Erase Alarm commands Reader Core 3

1.3.31 Failed Kill Alarm interface Reader Core 3

1.3.32 Failed Kill Alarm commands Reader Core 3

1.3.33 Failed Lock Alarm interface Reader Core 3

1.3.34 Failed Lock Alarm commands Reader Core 4

1.3.35 Failed Mem Read Alarm interface Reader Core 4

1.3.36 Failed Mem Read Alarm commands Reader Core 4

1.3.37 TT Oper Status Alarm interface Reader Core 4

1.3.38 TT Oper Status Alarm commands Reader Core 4

1.3.39 Reader Device Oper Status Alarm interface Reader Core 4

1.3.40 Reader Device Oper Status Alarm commands Reader Core 4

1.3.41 IO Port Oper Status Alarm interface Reader Core 4

1.3.42 IO Port Oper Status Alarm commands Reader Core 4

1.3.43 Read Point Oper Status Alarm interface Reader Core 4

1.3.44 Read Point Oper Status Alarm commands Reader Core 4

1.3.45 Source Oper Status Alarm interface Reader Core 4

1.3.46 Source Oper Status Alarm commands Reader Core 4

1.3.47 Notification Channel Oper Status Alarm interface Reader Core 4

1.3.48 Notification Channel Oper Status Alarm commands Reader Core 4

1.3.49 Administrative Status enumeration interface Reader Core 4

1.3.50 Administrative Status enumeration commands Reader Core 4

1.3.51 Operational Status enumeration interface Reader Core 4

1.3.52 Operational Status enumeration commands Reader Core 4

1.3.53 Edge Triggered Alarm Direction enumeration interface Reader Core 4

1.3.54 Edge Triggered Alarm Direction enumeration commands Reader Core 4

1.3.55 Alarm Level enumeration interface Reader Core 4

1.3.56 Alarm Level enumeration commands Reader Core 4

1.3.57 Error Handling Reader Core 4

1.3.58 standard message and Transport Bindings Reader Core 4

1.3.59 Enable vendor extensions Reader Core 4
Table 5: ASPIRE middleware specifications for EPC-RM support

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 32/93

4 Filtering and Collection Specifications

4.1 Overview

In the scope of large scale deployments, RFID systems generate an enormous
number of object reads. Many of those reads represent non-actionable “noise.”
To balance the cost and performance of this with the need for clear accountability
and interoperability of the various parts, the design of the ASPIRE middleware
seeks to:
• Drive as much filtering and counting of reads as low in the architecture as

possible.
• Minimize the amount of “business logic” embedded in the Tags.

The Filtering and Collection Middleware is intended to facilitate these objectives
by providing a flexible interface (ALE (Application Level Events) interface) to a
standard set of accumulation, filtering, and counting operations that produce
“reports” in response to client “requests.” The client will be responsible for
interpreting and acting on the meaning of the report. Depending on the target
deployment (see Middleware Building Blocks and ASPIRE applications) the client of the
ALE interface may be a traditional “enterprise application,” or it may be new
software designed expressly to carry out an RFID-enabled business process. but
which operates at a higher level than the “middleware” that implements the ALE
interface. In the scope of the ASPIRE project, the Business Event Generation
(BEG) middleware (described later in this deliverable) would naturally, consume
the results of ALE filtering. However, there might be deployment scenarios where
clients will interface directly to the ALE filtered streams of RFID data.

The ASPIRE filtering & collection middleware specification is influenced by the
EPC specification [19]. The ASPIRE F&C middleware module must represent a
single interface to the potentially large number of readers that make up an RFID
system deployment. This allows applications to subscribe to a specific already
defined specification, which is then used along with the Logical Reader (LR)
definition to configure the corresponding reader devices using the underlying
reader access mechanisms.

Once the readers capture relevant tag data they notify the middleware which
combines the data arriving from different readers in a report that is sent
according to a pre-determined schedule to the subscribed applications. Since the
middleware receives data from multiple readers, it provides specific filtering
functionality depending on the different already defined specifications. So
redundant events from different readers observing the same location are not
included to the despatched report accomplishing the reduction of filtering and
aggregation required to the registered application interpreting the captured RFID
data.

The ASPIRE middleware must implement two interfaces between the filtering &
collection middleware and upstream layers (i.e. business event generation
modules or host applications). In particular:

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 33/93

• One interface is needed for transporting the RFID data. The TCP/HTTP
protocol could therefore be adopted to this end. The transport interface
must enable BEG and/or applications to receive RFID data either in a
“push” or in “pull” fashion. This interface will be important for the support
of the information flow of RFID data from tags and readers to the
business repository.

• A second interface (based on the SOAP and/or other XML messaging
protocols) for the managing the F&C server and controlling its operations.
This interface will not target the transport of RFID readings. Rather it will
allow definition of reading specifications, subscription of clients to the
results of particular filtering specification, as well as definition and
management of logical readers. This interface will be used from all the
ASPIRE management and development tools, which will need to configure
and/or program the F&C server operation.

E
C

Sp
ec

.x
m

l

Figure 6 Filtering and Collection (ALE)

The primary data types associated with the ALE API are:

• Filtering Specifications (e.g., ECSpec according to EPC-ALE [2]), which
specify how an event cycle is calculated

• Reports, (e.g., ECReports according to standard [2]), which contains one
or more reports generated from a single activation of a filtering
specification. Report instances must be provided in both a “pull” and
“push” manner. As a result, a related subscription mechanism needs to be
implemented.

Filtering specifications describe event cycles, along with one or more reports
which are to be generated from it. Filtering specifications must typically contain:

• A list of logical readers whose read cycles are to be included in the event
cycle.

• A specification of how the boundaries of event cycles are to be determined.
• A list of specifications each of which describes a report to be generated

from this event cycle.
Note that filtering specifications will generate event cycles as long as there is at
least one subscriber.

Reports are the output of an event cycle. Report instances contain a list of
reports, each one corresponding to a filtering specification. Moreover, report

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 34/93

instances include a number of metadata that provide useful information about
the event cycle.
The ALE interface revolves around client requests and the corresponding reports
that are produced. Requests can either be:
• immediate, in which information is reported on a one-time basis at the time of

the request; or
• recurring, in which information is reported repeatedly whenever an event is

detected or at a specified time interval. The results reported in response to a
request can be directed back to the requesting client or to a “third party”
specified by the requestor.

The available request modes are shown at the pictures below:
• Subscribe Mode: Asynchronous reports from a standing request

Figure 7 Asynchronous reports from a standing request (according to [19])

• ALE XPoll Mode: Synchronous (on-demand) report from a standing request

Figure 8 On-demand report from a standing request [19]

• Immediate Mode: Synchronous report from one-time request

Figure 9: Synchronous report from one-time request [19]

Prerequisite to defining a filtering specification is the definition of the Logical
reader(s). To this end an interface (API) enabling clients to define logical reader
names for use with the APIs that access the tags (namely Reading API and
Writing API), must be defined. The logical reader API provides also for the
manipulation of configuration properties associated with logical reader names.

4.2 F&C Specifications

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 35/93

Several of the Filtering and Collection specifications presented here represent
selected information from the Application Level Events (ALE) Specification
Version 1.1 (for more information see [2]). This is because the EPC-ALE fulfils
most of the requirements established in the previous paragraph. Note also that
ASPIRE must pursue compliance with the EPC specification [2], in accordance to
the project’s Annex 1 (“Description of Work”).

In the sequel we elaborate filtering and collection specifications in the following
areas:
• Supported Fields, Data types and Formats, which specify the formatting of the

rfid tag information, which will flow through the F&C middleware layer. The
formulation of this information is important in order to support common tags
and data formats (notably EPC and ISO related tag information).

• Accessing, configuring and managing the tags memory based on appropriate
interfaces and APIs.

• Reading tags and returning tag steams according to a reading specification
that defines how event cycles are calculated. Tags that are read will be
returned in the form of appropriate reports that correspond to reading
specifications.

• Writing tags, as required by several RFID applications that are concerned with
printing tags.

• Managing logical readers (i.e. combinations of one or more physical readers
and their antennas), which insulates the F&C layer from the details of the
readers physical configuration.

• Access control to the F&C functionalities, in order to implement/ensure
authorized access to the ASPIRE F&C operations.

• F&C Management, enabling management applications to manage the F&C
server.

The following table (Table 6) depicts the classification of F&C functionalities in the
above areas, also outlining some characteristic use cases where they are needed.
It is evident that the specified F&C layer addresses several key requirements and
use cases of Automatic identification applications.

F&C Specification Class Key Functionalities Sample Use Cases
Fields, Formats, Data
types

- Eases applications to
support common tags

Tag Memory Accessing Tag Memory Reading User Defined
Fields on an RFID Tag.

Reading Tags • Definition of Event
Cycles (e.g., when to
read).

• Definition of filters
and groups.

• Synchronous and
Asynchronous access
to data.

• Reading tags (e.g.,
items/products) of a
specific category
(based on a given
pattern).

• Repot Reading
Differences (e.g.,,
products removed
from a shelf)

Writing API • Definition of writing Writing tags (e.g., in

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 36/93

command cycles. manufacturing and
production) applications.

Logical Readers
Management

• Defining logical
readers based on
combinations of
physical readers

Changing the physical
readers configuration to
achieve grater accuracy
(e.g., adding antennas
and readers on a gate)
without changing the
reading specification i.e.
in a way transparent to
the upsteam applications

Access Control to F&C • Authorized access to
reading & filtering
operations

Prohibit unauthorized
applications to define
reading specifications and
execute/operate them on
the F&C server.

Table 6: High-Level Classification of F&C Specifications and Associated Use Cases

Specifications in the above areas follow in the paragraphs below.

4.2.1 Supported Fieldnames, Data types, and Formats

The ASPIRE middleware will support the following fieldnames, data types, and
formats.

Fieldnames
The ASPIRE middleware must support the following fieldnames:
• The epc fieldname, which might be exchanged in string format between the

reader access layer and the F&C middleware module.
• The killPwd fieldname, in the scope of an F&C layer’s interaction with a Gen2

Tag.
• The accessPwd fieldname, in the scope of an F&C layer’s interaction with a

Gen2 Tag.
• The epcBank fieldname, denoting the content of the EPC memory bank in

EPC implementations. In non-ECP impelentation the epcBank fieldname could
be exploited for other uses.

• The tidBank fieldname, denoting the content of the TID memory bank. For
non EPC comliant tags this field can also be exploited for other uses.

• The userBank fieldname, denoting the content of the User memory bank in
EPC Gen2 implementations. For non EPC Gen2 compliant tags this field can
also be exploited for other uses.

• The afi field name denoting the offset 18h to 1Fh in the EPC/UII memory bank
of a Gen2 Tag, which may hold the ISO 15962 Application Family Identifier
(AFI). When interacting with a Gen1 Tag, an ALE implementation SHALL
interpret the afi fieldname as a “field not found”. When interacting with any
other type of Tag, the interpretation of the afi fieldname is implementation
dependent.

• The nsi fieldname, denoting the offset 17h to 1Fh in the EPC/UII memory
bank of a Gen2 Tag, which holds the Numbering System Identifier (NSI).

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 37/93

When interacting with a Gen1 Tag, an ALE implementation SHALL interpret
the nsi fieldname as a “field not found”. When interacting with any other type
of Tag, the interpretation of the nsi fieldname is implementation dependent.

• Generic Fieldnames, in order to support Absolute Address Fieldnames,
Variable Fieldnames, as well as Variable Pattern Fieldnames.

Data types and Formats
In general, the specification of each data type in the ASPIRE F&C middleware
indicates which formats may be used with that data type. Each format denotes
whether it is permissible in both reading and writing contexts or only in reading
contexts. A format must define the syntax for literal values, for filter patterns,
and for grouping patterns. The following formats must be supported:
• The epc data type, refers to the space of values defined in the EPCglobal Tag

Data Standard.
• The Unsigned Integer (uint) Datatype, having as space the set of non-

negative integers.
• The bits Data type, referring to the set of all non-empty and finite-length

sequences of bits.
• The ISO 15962 String Data type, referring to the iso-15962-string.

Extensions for sensors data
More and more, RFID applications requirements include the processing of data
collected from sensors attached to the tagged objects (i.e. Active RFID) or
associated with the objects environment (i.e. temperature and position of the
transportation container, hygrometry of the storing warehouse, shocks or
position (horizontal or vertical) during transportation …). Reports (e.g.,
ECReports) can be extended by custom data “a priori” ignored by the standard
F&C by EPCglobal.

The Aspire Middleware should collect sensors data and add them in ECReports as
custom extensions. BEG should include filtering rules taking into account
collected sensors data (i.e. trig alerts if blood products are over heated …). Those
sensors data should be stored and retrieved by the ASPIRE Information Sharing
layer and displayed in the UI (e.g., curves, maps, etc.) (see section Information
Sharing Repository and Services Specification). Sensor data should be collected from
APIs such as OSGi WireAdmin, JCP JSR 256 (Mobile Sensor API) [23], JCP JSR
179 (Location API for J2ME) [24] and more. Sensors data should be convert and
represented as well-known and standard representations such as OSGi position
and measurements, JSR 275 (Units Specification) [25], WG84, ISO 31-0 (Quantities
and units).

4.2.2 Accessing/Configuring/Managing Tag Memory
An API for managing user-defined fieldnames that refers to fixed-length, fixed-
offset fields must be provided. User-defined fieldnames are equivalent in
functionality to the absolute fixed address fieldnames or to the variable
fieldnames. This API must support:
• Tag memory specifications, as a means to defining fieldname. In particular,

the ASPIRE middleware should allow users to define their own fieldnames.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 38/93

• Management of the Tag Memory based on appropriate tag memory
specifications.

• Unordered lists of fieldnames, each fieldname mapping to a specific fixed field
described by a bank, offset, and length.

• Unordered list of fieldnames, each fieldname mapping to a specific ISO 15962
data set named by an object identifier (OID).

• Single fixed-length field, as well as variable fields allowing upstream
middleware layers (i.e. ALE clients) to associate symbolic names with an ISO
15962 object identifiers.

4.2.3 Reading Tags - Reading API
The ASPIRE middleware should provide an API for:
• Defining/specifying/configuring/managing reading specifications, including

how an event cycle is to be calculated.
• Managing/Accessing Reports, which contain one or more reports generated

from an activation of a reading specification.
• Both synchronous and asynchronous access to RFID data. Asynchronous data

access should be supported based on appropriate data access interface.

Reading Specifications
A reading specification specifies an event cycle and one or more reports (i.e. lists
of RFID tags) that will be generated from it. It contains a list of Logical Readers
whose data are to be included in the event cycle, a specification of how the
boundaries of event cycles are to be determined, and a list of specifications each
of which describes a report to be generated from this event cycle. Hence a
reading specification must include:
• An unordered list that specifies one or more logical readers that are used to

acquire tags.
• A specification of how the beginning and end of event cycles are to be

determined.
• A span of time measured in physical time units.
• The units of physical time that may be used in the scope of a timing

specification.
• A URI that used to specify a start or stop trigger for an event cycle or

command cycle.
• A list of reports that will results after the execution of an event cycle. As

already specified, the filtering report must contain one or more reports.
Whenever an event cycle completes, a list of reports will be generated, unless
suppressed.

• A specification denoting the set of Tags is to be considered for filtering and
output. Depending on the application this set can be:

o All Tags read in the current event cycle.
o Additions from the previous event cycle.
o Deletions from the previous event cycle.

• A specification of the filtering to be carried out, which will specify the tags are
to be included in the final report. In addition the particular tags that must be
reported should also be specified (e.g., an application may be concerned for
particular tag fields only).

• A specification of filtering patterns on the various tag fields.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 39/93

• A specification of how tags should be group together in the scope of a report (in case
grouping is needed).

• A specification of statistics profile that could be included in the resulting list of
reports.

Filtered Reports
The output from an event cycle must be a list of reports. The list should contain
one or more reports each one corresponding to a report specified within a
filtering specification. In addition to the list of reports should obtain a number of
metadata fields that provide useful information about the event cycle. Overall a
filtered report must include:
• An indication of what kind of event caused the event cycle to initiate (e.g., an

explicit start trigger, the expiration of the repeat period, or a transition to the
requested state in the case where no start triggers were specified in the
filtering specification).

• An indication of what kind of event caused the event cycle to terminate (e.g.,
the receipt of an explicit stop trigger, the expiration of the event cycle
duration, the read field being stable for the prescribed amount of time, or the
fact that data become available).

• A grouping of the reports, as well as mechanisms for grouping relevant
reports.

• Statistical Information about “sightings” of a tag, in particular:
o Implementation-defined information about each “sighting” of a Tag,

that is, each time a Tag is acquired by one of the Readers
participating in the event cycle.

o Information about sightings of a Tag by a particular Reader.
o Information about a single sighting of a Tag by a particular reader.
o Information according to application/user defined statistics profiles.

Callbacks and Asynchronous Reading
The ASPIRE F&C middleware implementation must deliver asynchronous results
from event cycles to subscribers. Whenever a transition specifies that “reports
are delivered to subscribers” the ASPIRE implementation SHALL attempt to
deliver the results to each subscriber through an appropriate interface. The latter
must include the reports corresponding to the event cycle, and direct them to the
URI corresponding to the each subscriber.

4.2.4 Writing to Tags - ALE Writing API

Several RFID processes involve the tagging of items (e.g., during manufacturing
and production (see [22])). Hence, apart from reading operations the ASPIRE
middleware must also support writing operations.

The F&C middleware module should provide the means for managing command
cycles, which are to writing, exactly what event cycles are to readings. The
writing process of the ASPIRE F&C middleware should support:

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 40/93

• Specification of command cycles (i.e. how a command cycle is to be carried
out). This specification should be defined in the scope of command cycle
specifications.

• Synchronous and asynchronous execution of command cycles, with results
sent in the form of command reports. Asynchronous execution should take
place based on an appropriate callback mechanism.

• Reports containing a list of individual report instances, which are produced as a result of
an activation of a command cycle.

• An unordered list of name/value pairs, each specifying a parameter name and
a corresponding parameter value. Parameter values are string data that
provide specific values to be used in tag commands.

Command Specification
A command specification should contain:
• One or more logical reader names;
• A boundary specification that identifies an interval of time;
• One or more command specifications that specify operations to be performed

on a population of Tags visible to the specified logical readers during the
specified interval of time.

The command specifications also imply what information is included in a report
generated from each command cycle generated from this specification. Hence,
command specifications must also specify:
• How the beginning and end of command cycles are to be determined.
• An inclusive/exclusive filtering to be applied over sets/populations of tags
• Ordered lists of one or more operation specifications, each of which describes

a single operation to be performed on a tag. Operations include reading a
field, writing a field, and other Tag operations.

• Statistics profiles to be included in the resulting command reports.
• Mechanisms for validating the command cycle specifications.

Command Reports
Command reports constitute the output of a command cycle. Each report
contains an ordered list of individual command report instances, each one
corresponding to report specification that has been associated with the command
cycle specification. In addition to the reports instances themselves, command
reports contains metadata fields that provide useful information about the
command cycle. In particular a command report should include:
• A description of how a command cycle was started and ended.
• A description of what happened during the processing of a single tag.
• Information on the result of a single operation executing on a single tag

during a command cycle.
• The possible outcomes for a given operation
• Additionally, implementation-defined information about each “sighting” of a

Tag, that is, each time a Tag is acquired by one of the Readers participating in
the command cycle.

Writing tags
When writing tags the F&C implementation should:

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 41/93

• Allow upstream layers (e.g., BEG generator, applications) to formulate and
populate the writing comments. To this end they may keep track of in-
memory lists of tag values, along with patterns of tag values.

• Support random number generators (RNG), as a source of random numbers
that can be used by the write commands.

• Delivers asynchronous results from command cycles to subscribers, through
appropriate callbacks that deliver the command reports to subscribers
through the notification URIs associated with them.

4.2.5 Managing Logic Readers - ALE Logical Reader API
The ASPIRE F&C middleware must allow definition, management and
configuration of logical readers. The later are required to insulate the ASPIRE
middleware from knowing the low-level details of physical readers and antennas
configurations. Hence, the F&C middleware must support an interface through
which clients may define logical reader names for use with the reading and
writing operations specified above. This interface should also allow the
manipulation of configuration properties associated with logical reader names.

We conveniently call this logical reader interface, logical reader API. The Logical
Reader API should:
• Provide a way for F&C clients to define a new logical reader name as an alias

for one or more other logical reader names.
• Cater for manipulating “properties” (name/value pairs) associated with a

logical reader name.
• Provide a means for a client to get a list of all of the logical reader names that

are available, and to learn certain information about each logical reader.
• Provide error handling capabilities.
• Describes the configuration of a Logical Reader, along with its properties (as

name-value pairs).
• Be configurable in a way that can reduce the appearance of tags moving in

and out of a reader’s field of view due to intermittent tag reads. This is similar
to the tag smoothing mechanism introduced in [2].

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 42/93

Figure 10: Tag smoothing finite state machine diagram (according to [2]).

4.2.6 Access Control to F&C Functionalities
The ASPIRE F&C middleware must also support an API for controlling client to the
F&C functionalities and APIs (e.g., the reading, writing and logical readers’
configuration) outlined above. This API should provide role-based way to
associate access control permissions with client identities.

An authentication mechanism must also be in place at the bindings’ layer. This
authentication mechanism grants an identity, to each of the clients. A client
identity should maps to one or more roles, which accordingly maps to one or
more permissions. Each of the permissions denotes an access privilege to some
F&C functionality (or API). Hence, the F&C client will be permitted to access
those functionalities (i.e. sets of permissions) that are foreseen by its role.

Permissions are described by granting access to specific resources. A client may
access only the resources for which it has access permission. The Access Control
API specifies facilities that may overlap or conflict with facilities provided by the
environment in which other ALE APIs are provided. For example, it is common in
enterprises to centralize information about identities, roles, and permissions in
repositories such as LDAP servers, so that this information may be shared across
many different applications. In such a setting, it may not be appropriate for the
system component including an ALE implementation to provide its own API for
manipulating client identities and permissions, but instead defer to the
mechanisms provided by the LDAP environment.

4.2.7 ALE Management

The F&C implementation should be manageable through external manager
entities, in particular JMX entities. Hence, the ASPRIE F&C module will be a JMX-
enabled management application. As shown in Figure 14 of the JMX Architecture
[15] three layers should be implemented:

• Instrumentation Level.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 43/93

• Agent Level.
• Adaptors level.

For every resource that needs management and monitoring the instrumentation
process will be implemented. Java objects known as MBeans following the design
patterns and interfaces defined in the JMX specification will be used for each and
one of them to expose the management information in the form of attributes and
operations and offer access to the instrumentation of resources. MBeans for the
following functions may be created:
• Starting the various components of the F&C server

This will mainly be achieved by bundlizing the various components to work
within an OSGI container.

• Stopping the various components of the F&C server
This will mainly be achieved by bundlizing the various components to work
within an OSGI container.

• Managing the Logical readers
• Managing the Incoming reports
• Managing the Outgoing reports
• Managing the defined LRSpecs
• Managing the defined reading specifications (e.g., ECSpecs).
• Managing the Subscribers

Also an MBeanServer will be created which will contain the list of MBeans
registered with it. All management operations performed on the MBeans will be
done through the MBeanServer. All the JMX agents that will provide the set of
services will reside at the MBeanServer. Each of these services is termed an
agent service.

The JMX agent should contain at least one protocol adaptor or connector. These
protocol adaptors and connectors provide the possibilities of remote
management, by defining the manager components which are capable of
communicating with the agents. Protocol adaptors and connectors make the
agent accessible from remote management applications. They provide a view
through a specific protocol of the MBeans instantiated and registered in the
MBean server. For exporting JMX API instrumentation to remote applications
Remote Method Invocation (RMI) will be used.

4.3 ASPIRE ALE API Specifications Requirements overview

The following table summarizes the ASPIRE Filtering and Collection
Specifications. Implementation priority values from 1 to 5 with 5 denoting the
most important priority.

4.3.1 Fieldnames, Data types, and Formats

C/N Specification Priority
3.1 Support for Fieldnames (according to EPC-ALE)

3.1.1 Epc fieldname 4
3.1.2 killPwd fieldname 2
3.1.3 accessPwd fieldname 2
3.1.4 epcBank fieldname 2

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 44/93

3.1.5 tidBank fieldname 2
3.1.6 userBank fieldname 2
3.1.7 The afi fieldname 2
3.1.8 The nsi fieldname 2
3.1.9 Generic Fieldnames 2
3.1.10 Absolute Address Fieldnames 2
3.1.11 Variable Fieldnames 3
3.1.12 Variable Pattern Fieldnames 3

3.2 Data types and Formats
3.2.1 EPC data type 4
3.2.2 Binary Encoding and Decoding of the EPC Data type 3
3.2.3 EPC data type Formats 3
3.2.4 EPC data type Pattern Syntax 3
3.2.5 EPC data type Grouping Pattern Syntax 3
3.2.6 Unsigned Integer (uint) Data type 3
3.2.7 Binary Encoding and Decoding of the Unsigned Integer Data type 2
3.2.8 Unsigned Integer Data type Formats 2
3.2.9 Unsigned Integer Pattern Syntax 2
3.2.10 Unsigned Integer Grouping Pattern Syntax 2
3.2.11 The bits Data type 2
3.2.12 Binary Encoding and Decoding of the Bits Data type 2
3.2.13 Bits Data type Formats 2
3.2.14 ISO 15962 String Data type 4
3.2.15 ISO 15962 String Format 4

Table 7: Specifications for Fieldnames, Data types and Formats

4.3.2 Tag Memory Specification API (According to EPC ALE)

C/N Specification Priority

3.3.1
Tag memory specifications, as a means to defining fieldname. In
particular, the ASPIRE middleware should allow users to define their own
fieldnames.

3

3.3.2 Management of the Tag Memory based on appropriate tag memory
specifications. 3

3.3.3 Unordered lists of fieldnames, each fieldname mapping to a specific fixed
field described by a bank, offset, and length. 3

3.3.4 Unordered list of fieldnames, each fieldname mapping to a specific ISO
15962 data set named by an object identifier (OID). 3

3.3.5

Single fixed-length field, as well as variable fields allowing upstream
middleware layers (i.e. ALE clients) to associate symbolic names with an
ISO 15962 object identifiers.

3

Table 8: Tag Memory Specification API

4.3.3 Reading API

C/N Specifications Priority

3.4.1

Support for Reading Specification:
1. Event cycles boundaries
2. Reports,
3. Logical readers
4. Filters, groups, patterns
5. Tags to be considered for filtering and output (all tags, additions,

deletions)
6. Statistics Profile

5

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 45/93

3.4.2

Support for Filtered Reports
1. List of reports
2. Indication of what kind of event caused the event cycle to initiate

Indication of what kind of event caused the event cycle to terminate
3. Grouping of the reports, as well as mechanisms for grouping relevant

reports.
4. Statistical Information about “sightings” of a tag

5

3.4.3 Callbacks and Asynchronous Reading - Delivery of asynchronous results
from event cycles to subscribers. 5

Table 9: Tag Reading Specifications

4.3.4 Tag Writing Specification

C/N Specification requirements Priority
 3

3.5.1

Command Support:
1. One or more logical reader names;
2. Boundary specification that identifies an interval of time;
3. Operations to be performed on a population of Tags visible to the

specified logical readers during the specified interval of time.
4. How the beginning and end of command cycles are to be

determined.
5. An inclusive/exclusive filtering to be applied over sets/populations of

tags
6. Ordered lists of one or more operation specifications, each of which

describes a single operation to be performed on a tag. Operations
include reading a field, writing a field, and other Tag operations.

7. Statistics profiles to be included in the resulting command reports.
8. Mechanisms for validating the command cycle specifications.

3

3.5.2

Support for Command Reports
1. Description of how a command cycle was started and ended.
2. Description of what happened during the processing of a single Tag.
3. Information on the result of a single operation executing on a single tag

during a command cycle.
4. The possible outcomes for a given operation
5. Additional, implementation-defined information about each “sighting” of

a Tag.

3

3.5.3

Writing tags
1. Allow upstream layers (e.g., BEG generator, applications) to formulate

and populate the writing comments. To this end they may keep track of
in-memory lists of tag values, along with patterns of tag values.

2. Support random number generators (RNG), as a source of random
numbers that can be used by the write commands.

3. Deliver asynchronous results from command cycles to subscribers,
through appropriate callbacks that deliver the command reports to
subscribers through the notification URIs associated with them.

3

Table 10: Tag Writing Specifications

4.3.5 Logical Reader API

C/N Specification Priority

3.6.1 Provide a way for F&C clients to define a new logical reader name as an alias
for one or more other logical reader names. 5

3.6.2 Manipulate “properties” (name/value pairs) 5

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 46/93

3.6.3 Access a list of all of the logical reader names that are available, as well as
information about each logical reader. 5

3.6.4 Provide error handling capabilities. 5

3.6.5 Configure a way to reduce the appearance of tags moving in and out of a
reader’s field of view due to intermittent tag reads. 5

Table 11: Logical Reader Specifications

4.3.6 Access Control API

C/N Specification Priority
3.7.1 Access Control Mechanisms 3
3.7.2 Support for Access Control Identity 3
3.7.3 Support for Access Control Roles 3
3.7.4 Support for Access Control Permission 3
3.7.5 Support for anonymous user 3

Table 12: Specifications for Access Control to F&C Functionalities

4.3.7 ALE Management

C/N Specification Priority
3.7 F&C Managemement 4

3.7.1 Starting the F&C Server 4
3.7.2 Stopping the F&C Server 4
3.7.3 Managing Logical Readers 4
3.7.4 Managing Incoming Reports 4
3.7.5 Managing Outgoing Reports 4
3.7.6 Managing LLRP Specifications and Artifacts 3
3.7.7 Defined Reading Specifications (e.g., EPC-ALE ECSpecs) 3
3.7.8 Managing Subscribers 3

Table 13: F&C Management Specifications

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 47/93

5 Information Sharing Repository and Services Specification

5.1 Overview

The ASPIRE Information Sharing repository and services are the components
that:
• Receive application-agnostic RFID data from the filtering & collection

middleware through the Business Event Generation (BEG) application.
• Translate RFID data in corresponding business events. These events carry the

business context as well (e.g., they refer to particular companies, business
locations, business processes etc.).

• Make business events available and accessible to other upstream applications.
The Information Services of the ASPIRE Information Sharing middleware itself
consists of three parts:

• A capture application that interprets the captured RFID data.
• A repository (i.e. a database system) that provides persistence, and
• A query application that retrieves the business events from the repository.

Note that the ASPIRE Information Sharing repository:
• Deals explicitly with historical data (in addition to current data).
• Deals not just with raw RFID data observations, but also with the business

context associated with these data (e.g., the physical world and specific
business steps in operational or analytical business processes).

• Operates within enterprise IT environments at a level that is much more
diverse and multi-faceted comparing to the underlying data capture and
filtering & collection middleware modules.

Generally, the ASPIRE information sharing repository will be built to deal with
two kinds of data:

• RFID event data i.e. data arising in the course of carrying out business
processes. These data change very frequently, at the time scales where
business processes are carried out.

• Master/company data, i.e. additional data that provide the necessary
context for interpreting the event data. These are data associated with the
company, its business locations, its read points, as well as with the
business steps comprising the business processes that this company
carries out.

Business events are generated at the edge and delivered into the Information
Sharing middleware infrastructure through an appropriate capture interface. The
BEG middleware (illustrated in a later paragraph) undertakes to automatically
map application agnostic reading (from the F&C layer) to the Information Sharing
middleware. These events can be subsequently delivered to interested enterprise
applications through the interface enabling query of RFID business events.

Please note that the ASPRIE Information Sharing Repositories Specification are
influenced and compliant to the EPC Information Services (EPCIS) Specification
Version 1.0.1[8].

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 48/93

5.2 Specification of Information Sharing Data Model

ASPIRE will exploit the data model defined in EPCIS. Hence, it will support the
following events:
• Object Events, which correspond to observations of a collection of EPCs during

a specific business step at a specified Location & Time.
• Aggregation Events, which reflect a physical association of a set of EPCs with

a parent EPC along with a business step at a Location & Time.
• Quantity Events, which correspond to statements about an object Class (not

individual objects), including a quantity, a Location & Time.
• Transaction Events, which records objects associated with a wider business

transaction.

Similarly to EPCIS, ASPIRE Information Sharing services will be extensible.
Extensibility will be supported in the following dimensions:
• New Event Type: This concerns the addition of a new Event Type.
• New Event Field: This concerns the addition of a new field to an existing

Event Type.
• New Vocabulary Type: This relates to the addition of a new Vocabulary

Type to the available Vocabulary Types.
• New Master Data Attribute: This relates to the definition of a new attribute

name for an existing Vocabulary.
• New Vocabulary Element: This relates to the addition of a new element to

an existing Vocabulary.

ASPIRE will capitalize on the notion of vocabularies in order to keep track of a
company’s (e.g., SME’s) data. For the ASPIRE vocabularies a hierarchical or
multi-hierarchical structure will be supported. Hierarchical relationships between
vocabulary elements should be represented through master data. Specifically, a
parent identifier carries, in addition to its master data attributes, a list of its
children identifiers. Each child identifier must belong to the same Vocabulary as
the parent.
In order to build vocabularies, the Information Sharing repository (and
associated database schema) must support:
• Value Types Primitive types.
• Event Types.
• Event Fields included as part of the Event Types definitions.
• Vocabulary Types.
• Master Data Attributes included as part of Vocabulary Types definitions. In the

scope of ASPIRE SMEs or even industry vertical working groups could define
additional master data attributes for the vocabularies.

• Vocabulary Elements. It is expected that in the scope of ASPIRE SMEs or
industry vertical working groups will define vocabulary elements for the
BusinessStep vocabulary, the Disposition, and the BusinessTransactionType
vocabulary.

Master data and event data will be hosted in a Relational Database according to
the various events and vocabularies.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 49/93

5.3 Information Sharing Services Specifications
As already outlined, information sharing services will undertake to access and
write the Information Sharing data from/to the IS database. As already outlined
Information Sharing services should provide two interfaces: (a) A capture
interface fro writing to the repository and (b) A query interface for reading from
the repository. The later must support both “pull” and “push” data access. The
diagram below illustrates the relationship between these interfaces (capturing,
query) as defined in the EPCIS specification [8].

Figure 11 Query Control and Callback Interface relationship [8]

The ASPIRE Information Sharing specifications are in more detailed described in
the following paragraphs.

5.3.1 Capture Operations
Capture Operations target the population of the Information Sharing respository
based on core events, in the scope of a capture Application. In this context, we
consider as “client” the capture application and “service” as a system that
implements a capture interface.

5.3.1.1 Authentication and Authorization
At the capture interface there must exist a means for supporting the folliwng
authentication operations:

• The “service” to authenticate the “client” identity,
• The client to authenticate the information sharing “Service’s” identity
• Both of the above.

The means of authentication depends on the particular binding.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 50/93

5.3.1.2 Event Capture
The capture interface must contain only a single method, capture, which takes a
single argument and returns no results. The capture interface must accept each
element of the argument list that is a valid Business Events (e.g., EPCISEvent) or
subtype thereof. Other types of events through vendor or SMEs extension can
also be accepted in the scope of the event capture operation.

5.3.1.3 Master Data Capture Service
The capture interface must contain only a single method, capture, which takes a
single argument and returns no results. The capture interface must accept each
element of the argument list that is a valid Master Data element.

5.3.2 Query Operations
Query operations must provide two interfaces:
• One for supporting business event data access on demand. Based on this

interface upstream applications and other partners (e.g., trading partners)
can capture data through interacting with the Information Sharing repository.

• One for supporting access to business event data based on subscriptions,
through appropriate callbacks.

In this context the term “client” refers to application accessing the Information
Sharing Repository, whereas the term “service” refers to a system that
implements the above two interfaces (for “push” and “pull” data access).

5.3.2.1 Authentication

The ASPRIE Information Sharing middleware should provide a means for:
• The “service” to authenticate the “client” identity
• The “client” to authenticate the “Service” identity
• Both of the above operations.

5.3.2.2 Authorization
A “service” may wish to provide access to only a subset of information,
depending on the identity of the requesting client. This situation commonly arises
in cross-enterprise scenarios where the requesting client belongs to a different
organization than the operator of a “service”, but may also arise in intra-
enterprise scenarios.

5.3.2.3 Queries for Large Amounts of Data
Many of the query operations defined below allow a client to make a request for
a potentially unlimited amount of data. For example, the response to a query
that asks for all ObjectEvent instances within a given interval of time could
conceivably return one, a thousand, a million, or a billion events depending on
the time interval and how many events had been captured. This may present
performance problems for service implementations.

To mitigate this problem, a “service” could reject any request by raising an
exception. This exception indicates that the amount of data being requested is
larger than the service is willing to provide to the client.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 51/93

5.3.2.4 Overly Complex Queries
“Service” implementations may wish to restrict the kinds of queries that can be
processed, to avoid processing queries that will consume more resources than
the service is willing to expend. For example, a query that is looking for events
having a specific value in a particular event field may require more or fewer
resources to process depending on whether the implementation anticipated
searching on that field (e.g., depending on whether or not a database column
corresponding to that field is indexed). As with queries for too much data, this
may present performance problems for service implementations.

To mitigate this problem, a “service” MAY reject any request by raising an
exception. This exception indicates that structure of the query is such that the
service is unwilling to carry it out for the client.

5.3.2.5 Query Framework
The ASPIRE Information Sharing Query mechanism will provide a general
framework by which client applications may query business events. The
mechanism should provide both on-demand queries, in which an explicit request
from a client causes a query to be executed and results returned in response,
and standing queries, in which a client registers ongoing interest in a query and
thereafter receives periodic delivery of results via the a callback mechanism.

5.3.2.6 Error Conditions
Methods of the Query Control API should signal error conditions to the client by
means of exceptions. In addition to exceptions thrown from the Query Control
Interface, an attempt to execute a standing query may give an exception (e.g.,
in case the results returned by the query are too large).

5.3.2.7 Predefined Queries for Information Sharing
The ASPIRE Information Sharing implementation should provide predefined
queries, which a client may invoke using the poll and subscribe methods of the
Query Control Interface / API. The predefined queries defined in this section each
have a large number of optional parameters; by appropriate choice of
parameters a client can achieve a variety of effects.

5.3.2.7.1 Simple Event Query
This query is invoked by specifying the quary as a string, which the
implementation has to either poll or subscribe. The result should contain a
(possibly empty) list of Event instances. Each element of the result list could be
of any event type; i.e., ObjectEvent, AggregationEvent, QuantityEvent,
TransactionEvent, or any extension event type that is defined as part of the
extension mechanisms.

5.3.2.7.2 Simple Master Data Query
This query is invoked by specifying a query as a string to the polling function.
The result should contain a (possibly empty) list of vocabulary elements together
with selected attributes. The SimpleMasterDataQuery should be available via poll
but not via subscribe; an exception should an exception in case subscription is
accepted.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 52/93

5.3.2.8 Query Callback Interface
The Query Callback Interface is the path by which a “service” delivers standing
query results to a client. A callback method should be called each time the
“service” executes a standing query.

5.3.3 Bindings for Capture and Query Operations
ASPIRE will support messaging binding for capture operations. In particular,
message queues, based on both point-to-point and publish/subscribe XML
messaging. The implementation of message queue should be based on JMS
technology. In addition HTTP bindings for the capture operations will be
supported.

Likewise for the Query Control Interface SOAP/HTTP, AS2 Binding, HTTP Binding
and HTTPS bindings should be supported.

5.3.4 Management of Information Sharing Repository and Processes
The repository will be implemented as a JMX-enabled management application,
to allow for flexible management of the Information Sharing servers and
repository. As shown in Figure 14 of the JMX Architecture three layers should be
implemented:

• Instrumentation Level.
• Agent Level and
• Adaptors level

For every resource that needs management and monitoring the instrumentation
process will be implemented. A Java objects known as MBeans following the
design patterns and interfaces defined in the JMX specification will be used for
each and one of them to expose the management information in the form of
attributes and operations and offer access to the instrumentation of resources.
MBeans for the following functions MAY be created:
• Starting the various components of the repository.

This will mainly be achieved by bundling the various components to work
within an OSGI container (according to the ASPIRE architecture).

• Stopping the various components of the information sharing repository.
This will mainly be achieved by bundling the various components to work
within an OSGI container (according to the ASPIRE architecture).

• Managing the Captured data.
• Managing the Queried data.
.Also an MBeanServer will be created which will contain the list of MBeans
registered with it. All management operations performed on the MBeans will be
done through the MBeanServer. All the JMX agents that will provide the set of
services will reside at the MBeanServer. Each of these services is termed an
agent service.
The JMX agent should contain at least one protocol adaptor or connector. These
protocol adaptors and connectors provide the possibilities of remote
management, by defining the manager components which are capable of
communicating with the agents. Protocol adaptors and connectors make the

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 53/93

agent accessible from remote management applications. They provide a view
through a specific protocol of the MBeans instantiated and registered in the
MBean server. For exporting JMX API instrumentation to remote applications
Remote Method Invocation (RMI) will be used.

5.4 Information Sharing Specifications Overview

The following table summarizes the ASPIRE Information Sharing Specifications.
Implementation priority values from 1 to 5 with 5 being of most importance.

C/N Specification requirements Priority
5.1 Information Sharing Data Model 4

5.1.1 Extension Mechanisms 4
5.1.2 Hierarchical Vocabularies 4
5.1.3 Support for Core Event Types (EPCIS compliant) 4
5.2 Capture Operations 4

5.2.1 Authentication and Authorization 3
5.2.2 Event Capture Service 5
5.2.3 Master Data Capture Service 5
5.3 Query Operations 4

5.3.1 Authentication 3
5.3.2 Authorization 3
5.3.3 Queries for Large Amounts of Data 3
5.3.4 Overly Complex Queries 3
5.3.5 Query Control API 4
5.3.6 Error Handling 3
5.3.7 Simple Event Query 5
5.3.8 Simple Master Data Query 5
5.3.9 Query Callback Interface 5
5.5 Bindings for Capture Operations 2

5.5.1 Message Queues 2
5.5.2 HTTP 2
5.6 Bindings for Query Operations 4

5.6.1 Query Control Interface 4
5.6.1 SOAP/HTTP 2
5.6.2 AS2 Binding for the Query Control Interface 2
5.6.2 Query Callback Interface 2

5.6.2.1 HTTP Binding 2
5.6.2.2 HTTPS Binding 2
5.6.2.3 AS2 Binding 2

5.7 Management Operations 3
5.7.1 Starting 3
5.7.2 Stopping 3
5.7.3 Captured data 3
5.7.4 Queried data 3

Table 14: Overview of Specifications for the ASPIRE Information sharing repository

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 54/93

6 Business Event Generation Specifications

6.1 Overview

The F&C (Filtering and Collection) server sends specific reports about the
collected data to external applications. Such data are collected and read
according to reading specifications that are described above and which are set on
the F&C middleware. The F&C middleware will in principle output reports that
contain raw RFID tag streams (e.g., tag IDs). The latter do not carry any
business semantics and cannot therefore be understood and stored in the
database structure of the information sharing repository. Hence, there is a clear
need for an application that will add business semantics to the raw tag streams,
thus enabling their storage and manipulation from the ASPIRE information
sharing middleware. This application for example can put the “sighting” of a tag
to a particular business context comprising the company, the business location,
the read point, as well as the business process in the scope of which the
particular tag was read by the F&C layer.

Adding appropriate business context to raw tag streams requires access to the
master/company data of the information sharing repository, as well as to run-
time parameters that instantiate the business context generation. Thus, RFID
deployments have to rely in capturing applications that take into account the
particular business semantics pertaining to the target business case. ASPIRE
automates this process based on the specification of a generic and configurable
middleware component for Business Event Generation (BEG). The BEG will
incorporate middleware logic for:
• Looking up master data at the ASPIRE information sharing repository.
• Extracting the required business semantics (metadata).
• “Decorating” tag information with business semantics in order to generate

business events that comply to the ASPIRE information sharing specifications.
The BEG will of course leverage run-time parameters for identifying and
customizing its operation to particular instances of business processes and tags.
These run-time parameters will for example tailor the BEG engine to work with a
particular invoice or pro-form (hence creating a BEG instance for the particular
task at hand). As shown in Figure 12 the BEG will query the Information Sharing
Master Data vocabularies so as to collect the information needed, that will
already have been inserted to the Master Data repository, to get the necessary
context for interpreting the incoming data reports generated from the F&C
server.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 55/93

Business
Event

Generator
(BEG)

Capturing
Application

HTTP/
TCP

Information
Sharing

Repository

SOAP/
HTTP

JMX

Filtering &
Collection

Layer

ALE
Server

SOAP/
HTTP

Master Data

Event/Master
Data

Figure 12 The Business Event Generation (BEG) stands between the F&C and Information

Sharing Layers

6.2 BEG Engine Specification

6.2.1 BEG to F&C bindings
ASPIRE BEG will implement HTTP/TCP to receive asynchronous results through a
direct callback. Hence, the BEG shall be working in an asynchronous fashion (i.e.
waiting from tag streams from the F&C).

6.2.2 BEG to Information Sharing bindings
The BEG implementation will provide a SOAP/HTTP binding for interfacing with
the middleware of the information sharing layer and the associated repository.

6.2.3 Access/Collect required Master Data
BEG should query the repository in order to collect the required attributes from
the Business Transaction Vocabulary of predefined Events. Hence, BEG should
first associate a tag with a particular event (e.g., an Object Event if the object is
an item, an Aggregation event if the object contains other objects (i.e. it is a
palette or container or package or shelf).

6.2.4 Reports Processing
BEG should be able to use the predefined business transactions attributes that it
will acquire and should accordingly use them to “decode” and “decorate” the
delivered report from the F&C server.

6.2.5 Authentication and Authorization
The BEG engine must be seen as a capture application i.e. a “client” application
for the information sharing repository. Hence, BEG access should be able to
authenticate itself against the Information Sharing capture operations
authentication layer.

6.2.6 BEG Management
BEG will be also JMX-enabled management application. As shown in Figure 14 of
the JMX Architecture three layers should be implemented:

• Instrumentation Level

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 56/93

• Agent Level and
• Adaptors level

For every resource that needs management and monitoring the instrumentation
process will be implemented. A Java objects known as MBeans following the
design patterns and interfaces defined in the JMX specification will be used for
each and one of them to expose the management information in the form of
attributes and operations and offer access to the instrumentation of resources.
MBeans for the following functions may be created:
• Starting the various components of the BEG application.

This will be achieved by bundling the various components to work within
an OSGI container.

• Stopping the various components of the BEG application.
This will mainly be achieved by bundling the various components to work
within an OSGI container.

• Managing the Incoming Reports (i.e. tag streams from the underlying F&C
server).

• Managing the selected transaction to capture.

Also an MBeanServer will be created which will contain the list of MBeans
registered with it. All management operations performed on the MBeans will be
done through the MBeanServer. All the JMX agents that will provide the set of
services will reside at the MBeanServer. Each of these services is termed an
agent service.

The JMX agent should contain at least one protocol adaptor or connector. These
protocol adaptors and connectors provide the possibilities of remote
management, by defining the manager components which are capable of
communicating with the agents. Protocol adaptors and connectors make the
agent accessible from remote management applications. They provide a view
through a specific protocol of the MBeans instantiated and registered in the
MBean server. For exporting JMX API instrumentation to remote applications
Remote Method Invocation (RMI) will be used.

6.2.7 Graphical User Interface
The BEG engine (capturing application) should come with a simple GUI that will
provide the following functionalities:
• Entering the port that the BEG will listen for the reports from the F&C server.
• Entering the information sharing server URI that will provide the

Capture/Query Interface service.
• Choosing one from predefined business transactions for the report processing

and instantiating with needed parameters (e.g., the transaction
identification).

This GUI will be incorporated to the overall ASPIRE IDE. Note however that the
parameters specified above (i.e. port, URI, business transaction identification)
specify a BEG engine instance. Hence, the ASPIRE IDE should also allow for
abstracting the above information and associating it with an alias for flexible
management of BEG engine instances. This will allow using the alias for
development/deployment, rather than carrying the low-level information.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 57/93

6.3 BEG Specifications Overview
The following table summarizes the ASPIRE BEG specifications. Implementation
priority values from 1 to 5 with 5 being of most importance.

C/N Specification Priority
4.1 BEG to F&C bindings 5

4.2 BEG to information sharing
bindings 5

4.3 Master Data Access and Collection 5
4.4 Reports Processing 5
4.5 Authentication and Authorization 3
4.6 BEG Management 4

4.6.1 Starting 3
4.6.2 Stoping 3
4.6.3 Incoming Reports 3
4.6.4 Captured Transaction 3
4.7 Graphical User Interface 4

Table 15: BEG Specifications requirement Overview

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 58/93

7 Connector Specifications

7.1 Overview
RFID middleware components described in the previous paragraphs provide a
foundation for translating raw RFID streams to meaningful business events
comprising business context such as where a tag was seen, at what time and in
the scope of which process. Enterprises can then leverage these business events
through their legacy IT systems (e.g., ERPs, WMS, corporate databases), which
are used to support their business processes. To this end, there is a clear need
for interfacing these legacy systems, with the information sharing repositories,
established and populated as part of the RFID deployment. Interfacing between
IT systems and the information sharing repository, as well as other middleware
blocks of the RFID deployment is realized through specialized middleware
components that are called “connectors”.

The main purpose of connector components are to abstract the interface between
the ASPIRE information repository and enterprise information systems. Hence,
connectors offer APIs, that enable proprietary enterprise information systems to
exchange business information with the an ASPIRE RFID middleware system.

Connectors should therefore provide:
• Support for services and events: Composite applications should be able to

call out to existing functionality as a set of services, and to be notified when a
particular event type (for example, “purchase order inserted,” “employee
hired”) occurs within an existing application. Typical events of interest to the
enterprise information system are those signifying the boundaries of a
transaction (i.e. transaction start and transaction finish events).

• Service abstraction: All services should have some common properties,
including error handling, syntax, and calling mechanisms. They should also
have common access mechanisms such as JCA (Java Connector Architecture),
JDBC, ODBC (Object Database Connectivity), and Web services, ideally
spanning different platforms. This makes the services more reusable, while
also allowing them to share communications, load balancing, and other non-
service-specific capabilities.

• Functionality abstraction: Individual services must be driven by metadata
about the transactions that the business needs to execute. Ideally, this
metadata is stored in a platform-agnostic and easily transformed format so
that the interfaces can be easily adapted to new technologies.

• Process management: Services should embed processes, and process
management tools should call services. Hence, connectors should be able to
support the grouping of several service invocations to processes..

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 59/93

Figure 13 Overview of a Connector Application and its positioning in the ASPIRE architecture

7.2 Connector Specifications

7.2.1 Adapter Framework

7.2.1.1 Standard Adapters for Information Exchange – Information Exchange

Semantics
In the scope of the interaction between enterprise information systems and the
ASPIRE information sharing repository, the ASPIRE connector application may
support popular adapter frameworks [14] for information exchange, such as
ebXML (Electronic Business using eXtensible Markup Language) and EDI
(Electronic Data Interchange). Depending on the application, ASPIRE may also
consider connectors handling specialized semantics e.g., HIPAA (Health
Insurance Portability and Accountability Act) for healthcare applications and ISO
15022 by for financial services.

7.2.1.2 Standard interfaces – Application and Data Adapters
The connector application has to support standard popular enterprise interfaces
for interacting with IT systems such as:
• Java Database Connectivity (JDBC) for interacting with relational databases.
• The JavaEE™ Connector Architecture (JCA) for interacting with JCA enabled

applications.
• W3C Web Services for interacting with numerous applications that provide

nowadays Web Services interfaces.

The Connector application should use standard APIs and document interfaces to
integrate applications at the application logic level. It will reuse the business

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 60/93

rules, error handling, and processing logic already built into the application. This
reduces the risk of data integrity violations and avoids adapter recreation when
the underlying database changes.

7.2.1.3 Custom tooling for application platform suites
The Connector application should come with custom tooling for integration within
the ASPIRE IDE and possible other (third-party) tools.

7.2.1.4 Transaction processing adapters
Connector application should provide transaction processing support through
leveraging the native transaction processing capabilities of the underlying
business systems. The objective will be to reuse the business logic that they
encapsulate while ensuring transactional integrity.

7.2.2 Graphical User Interface
The Connector application shall provide a UI for providing feedback to the user
for its various functionalities and configuration. The UI should display information
related to individual tagged objects as well as logical or physical groups of tagged
objects. The information should be displayed with rich widgets according to the
nature or type. For instance, if the history of a tagged object is associated with
GPS positions, the track of the object should be displayed in geomap-based
widgets such as Google Maps or Yahoo Maps. In the same way, the history of a
tagged object is associated with temperature values, the temperature curve
should be shown to the user. The curve should include also flags for threshold
infringements.

7.2.3 Connector to Various Systems ERPs bindings
Connector Application should use service adapters to create an enterprise SOA
(Service Oriented Architecture) with the various ERP, WMS and SCM systems. It
will have a collection of standards-based interfaces to business functions.

Specifically it should provide a SOAP/HTTP binding to connect with the various
applications (ERP, CRM, WMS etc.); if a SOAP/HTTP binding is provided, it should
conform to the WSDL. This SOAP/HTTP binding is compliant with the WS-I Basic
Profile Version 1.0 [20]. This binding builds upon the schema.

If a connector providing the SOAP binding receives an input that is syntactically
invalid according to this WSDL, the implementation should indicate this in one of
the two following ways:

• the implementation may raise a ValidationException, or
• it may raise a more generic exception provided by the SOAP processor

being used.

7.2.4 Connector to Various RDBMS
As already outlined the connector application should implement JDBC for
interfacing with various RDBMS systems.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 61/93

7.2.5 Connector to ASPIRE Information Sharing repository and services
The connector implementation should provide a SOAP/HTTP binding to interface
with the ASPIRE Information Sharing repository.

7.2.6 Connector to F&C bindings
Connector implementation should provide a SOAP/HTTP binding to interface with
the F&C server.

7.2.7 Authentication and Authorization
The connector application should provide a means to authenticate the client’s
identity. Hence, the connector should be authenticated against the Information
Sharing authentication mechanism (established at the capture interface and the
various applications).

7.2.8 Connector Management
A connector will be a JMX-enabled management application. As shown in Figure
14 of the JMX Architecture three layers should be implemented:

• Instrumentation Level
• Agent Level and
• Adaptors level

For every resource that needs management and monitoring the instrumentation
process will be implemented. A Java objects known as MBeans following the
design patterns and interfaces defined in the JMX specification will be used for
each and one of them to expose the management information in the form of
attributes and operations and offer access to the instrumentation of resources.
MBeans for the following functions may be created:
• Starting the various components of the Connector.

This will mainly be achieved by bundlizing the various components to work
within an OSGI container.

• Stopping the various components of the Connector.
This will mainly be achieved by bundlizing the various components to work
within an OSGI container.

• Managing the various implemented adapters
• Managing the connections between the systems

Also an MBeanServer will be created which will contain the list of MBeans
registered with it. All management operations performed on the MBeans will be
done through the MBeanServer. All the JMX agents that will provide the set of
services will reside at the MBeanServer. Each of these services is termed an
agent service.

The JMX agent should contain at least one protocol adaptor or connector. These
protocol adaptors and connectors provide the possibilities of remote
management, by defining the manager components which are capable of
communicating with the agents. Protocol adaptors and connectors make the
agent accessible from remote management applications. They provide a view
through a specific protocol of the MBeans instantiated and registered in the
MBean server. For exporting JMX API instrumentation to remote applications
Remote Method Invocation (RMI) will be used.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 62/93

7.3 Connector Specifications Overview
The following table summarizes the ASPIRE Connector specifications.
Implementation priority values from 1 to 5 with 5 being of most importance.
Note that the starting point for the ASPIRE connector applications is its interface
to corporate databases (i.e. the implementation of data adaptors and connections
to popular RDBMS systems). These tasks feature the highest priority in the table.

C/N Specification Requirements Priority
6.1 Adapter Framework

6.1.1 Standard Adapters (eBXML, EDI) 1
6.1.2 Standard interfaces (Web Services) 1
6.1.3 Custom tooling for application platform suites 1
6.1.4 Application adapters 4
6.1.5 Data adapters (JDBC) 5
6.1.6 Transaction processing adapters 1
6.2 Graphical User Interface 3
6.3 Connector to Various Systems ERPs bindings 4
6.4 Connector to Various RDBMS (JDBS) 5
6.5 Connector to EPCIS bindings 5
6.6 Connector to F&C bindings 3
6.7 Authentication and Authorization 2
6.8 Connector Management 3

6.8.1 Starting 3
6.8.2 Stoping 3
6.8.3 Adapters 3
6.8.4 Connections 3

Table 16: Connector Specifications Overview

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 63/93

8 ASPIRE IDE and Tools Specifications

8.1 Overview

ASPIRE will implement a number of editing and management tools enabling RFID
consultants and/or users to easily build and deploy RFID solutions. The purpose
of these tools will be twofold:
• To minimize the programming and configuration effort required to implement

and fully leverage an RFID solution.
• To manifest the programmability capabilities of the ASPIRE middleware

platform, through demonstrating that end-to-end RFID solution can be
essentially built and deployed using the ASPIRE tools.

The ASPIRE editing tools will deal with specification and configuration of
middleware functionalities. The tools will be integrated in a single integrated
development environment (IDE) for RFID applications, which we conveniently call
ASPIRE IDE.

8.2 Management Console Specifications

The ASPIRE IDE management console will use the JMX abstraction layer to
request from the managed objects to execute specific tasks and it will use
Remote Method Invocation (RMI) handles the communication between manager
and JMX agent.

The abstraction layer will utilize JMX adapters to communicate with the actual
managed objects. JMX adapters are the components that incorporate the object
specific management logic and provide a standardized interface to the
abstraction layer.

Figure 14 Overview of JMX Architecture [14]

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 64/93

The Aspire management component will require a JMX adapter interface for every
manageable component in order to function properly and be able to fulfill its
goal.

JMX technology is defined by two closely related specifications developed through
the Java Community Process (JCP) as Java Specification Request (JSR) 3 and JSR
160:
• JSR 3, Java Management Extensions Instrumentation and Agent Specification

and
• JSR 160, Java Management Extensions Remote API.

For the RCP console
The management architecture can be broken down into three levels. The first two
levels shown below, instrumentation and agent are defined by JSR 3. The remote
management level is defined by JSR 160.

• Remote Management: Protocol adaptors and standard connectors make a

JMX agent accessible from remote management applications outside the
agent’s Java Virtual Machine (JVM).

SO
AP/

H
TTP

SO
AP/H

TTP

SO
AP /H

TTP

M
as

te
r D

at
a

EC
Spec / LR

Spec

A
D

A
P

TE
R

A
D

A
P

TE
R

A
D

A
P

TE
R

A
D

A
P

TE
R

A
D

A
P

TE
R

A
D

A
P

TE
R

A
D

A
P

TE
R

A
D

A
P

TE
R C

ap
tu

re
 i/

f
Q

ue
ry

 i/
f

EP
C

 R
P

In

te
rfa

ce
E

P
C

 L
LR

P

In
te

rfa
ce

H
A

L
In

te
rfa

ce

Figure 15 ASPIRE IDE management Architecture

The ASPIRE IDE management console should manage as shown in Figure 15 the
following components:
• The various RFID readers that support RM (Reader Management)
• Reader Core proxy
• F&C Server
• BEG engine
• EPCIS repository
• Connector application

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 65/93

8.3 Tooling Specifications

The ASPIRE IDE components SHOULD provide means of configuration of the
underlying ASPIRE infrastructure. The user by describing his requirements to the
IDE, which should provide all the configuration options, will “translate” them into
configuration messages by which it will supply all the appropriate modules.

E
xp

or
t

S
erver

Figure 16 ASPIRE IDE Tools

8.3.1 ASPIRE IDE
ASPIRE IDE has been designed as an Eclipse RCP (Rich Client Platform)
application that will run over Equinox OSGI server. Every tool should be an
eclipse plugin/bundle that will be able to be installed or removed as needed. This
way many editions of the ASPIRE IDE can be released depending on the
functionalities required (as simple or as complicate depending on the demands)
for the RFID middleware that will be implemented.

8.3.2 Physical Reader Configuration Editor
This is a tool enabling consultants to configure physical readers and their
operational parameters and environments. This tool should be seen as
complementary to vendor specific tools (i.e. tools that come with each of the
readers). It should support the basic functionalities for an RFID reader (e.g. field
strength, number of antennas used, antenna tries, read tries, write tries, e.t.c.)

8.3.3 Logical Reader Configuration Editor
This tool will support the definition of logical readers (e.g., based on clustering of
physical, simulation and proxy readers). Four kinds of readers will be supported:

• LLRP readers
• RP readers
• HAL readers and

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 66/93

• Simulator readers

8.3.4 Reading Specifications Editor
This is a tool enabling editing, as well as management of F&C server Filtering
Specifications. It will be able to create, load and edit a reading specifications XML
file (e.g., an ECSpec according to the EPC Global ALE 1.1. specification).

8.3.5 F&C Commands Execution
The objective of this tool is to provide a control client to execute Application
Level Event specification (ALE) commands on a reader or component that
implements the ALE specification.

8.3.6 Connector Configurator
This tool will be able to interact with the Connector application to reveal all its
functionalities and configurations. It should enable configuration of connectors to
different systems and databases.

8.3.7 Master Data Editor (with support for Elementary Business Process Description)
A master data editor will be provided, enabling users and/or consultants to edit
enterprise data including information about the company’s location, its business
locations, readpoints, as well as its business processes. The description of
information such as business locations and readpoints is straightforward. The
description of business processes is indeed more challenging, since it requires
mapping business requirements to collections of RFID business events (according
to the ASPIRE information sharing framework established in earlier sections). The
starting point is the documentation of the business requirements, comprising the
archetypical use cases. It is possibly to use the master data concept in order to
encode business locations, read points, logical warehouses, containers,
disposition states, as well as event and business steps sequences as shown in
Figure 16 ASPIRE IDE Tools. In order to provide a more general framework for
handling RFID enabled logistics possesses we suggest encoding the above data
within a processes description language that could be amenable by graphical
tools.

It is important to break each use case into a series of discrete business steps
corresponding to various business events. Fixed lists of identifiers with
standardized meanings for concepts like business step and disposition must be
defined, along with rules for population of user-created identifiers like read point,
business location, business transaction and business transaction type. All these
information elements will be stored and managed as pieces of Master Data,
within an appropriate database schema.

An example in the area of warehouse management is given in Appendix A, where
popular processes [21] e.g. receiving, moving within warehouses, order
collection, pick & pack, order shipment, inventory are described in terms of RFID
business events. Figure 17 depicts the concept of decomposing a process into a
number of business events. The later events comply to the ASPIRE Information
Sharing specifications for RFID events (with direct references to EPC-IS
framework). We call Elementary Business Process, the process which can be

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 67/93

directly decomposed into RFID business events (as shown in Figure 17). As
already noted, Appendix A, includes the description of a number of typical
elementary business processes in the area of warehouse management and
logistics [16].

Figure 17: Description of Elementary RFID enabled Business Process

Summing up the Master Data Editor will enable editing of a company’s metadata (Master
Data), located at the Information Sharing repository needed to describe the company’s
operations, which includes:
• Business dispositions where one can set:

o its id
o its name
o and attributes as needed

• Business steps where one can set:
o its id
o its name
o and attributes as needed

• Business transactions where one can set:
o The transaction id
o The transaction name
o Attributes as needed
o Events that belongs to this transaction

 Event business location
 Event type
 Business step for the event
 Disposition for the event
 Read point
 Event id
 Report name this event is bind with

• Transactions type where one can set:
o its id.
o its name.
o and attributes as needed.

• Business locations where one can set the company’s:
o Name.
o Address.
o Country.
o City.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 68/93

o Read point.
o And a description.

• Finally Read Points where one can set
o Its id.
o Its name.
o And attributes as needed.

Note that some of the above master data should be edited in an hierarchical
fashion, i.e. Business Locations can in principle have as children other Business
Locations, while transactions could in principle have as children other Business
Transactions. This concept is also illustrated through an example in Appendix A,
where a typical taxonomy of a company’s warehouse is illustrated. This typical
taxonomy reveals that a company’s warehouse spaces (e.g., shelves, rooms,
warehouse, central warehouses) are indeed organized in an hierarchical fashion,
which must be supported by the ASPIRE tooling.

8.3.8 ASPIRE Business Process Management and Workflow Management Editor for

Composite Business Processes
In the scope of the previous paragraph we define the notion of an elementary
RFID enabled business process. Implementing elementary business processes
(e.g., those illustrated in Appendix A) is certainly the first step for companies
that would to bootstrap RFID deployment. We envisage however that the
implementation of more than one process, along with their integration (e.g.,
connecting the pick & pack with the shipment process in the case of the
processes exemplified in Appendix A) shown in Figure 18 can enable higher
degrees of automation and efficiency, overall yielding a multiplicative benefit.
Hence, moving at a higher business processes management level, it is possible to
define how individual business transactions and processes are connected and/or
integrated in the scope of a wider process.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 69/93

Figure 18: Connecting Elementary RFID Business Processes to Composite Business
Processes- Process Management

The ASPIRE tools will include data workflow management editor, which can offer
to business users and RFID consultants a graphical user interface for
manipulating complex business processes, that are composed as workflows of
elementary business processes as shown in Figure 18. The workflow management
tool will leverage (though. using/ invoking) the functionality of the above tools in
order to support RFID deployments in accordance to particular business
processes. The workflow management tool will use a graphical editor (e.g., based
on the XPDL (XML Process Definition Language)) to enable business users to
describe and configure all of the company’s assets/business processes (Master
Data), as well as functional specifications with the help of a workflow business
diagram.

 Figure 19: Wider Business Process/Transactions Example

8.3.9 ASPIRE Programmability Engine
Although not a distinct tool itself, the ASPIRE IDE will include a programmability
engine, which should be an integral component of the ASPIRE IDE. This engine
will be able to process a fully fledged RFID solution described in a special purpose
domain specific language (e.g., an XML based language). This language will be
specified as part of future deliverables of the WP4 of the ASPIRE project. The
concept of a Domain Specific Language for RFID is illustrated in [18].

The ASPIRE solution description language will comprise metadata associated with
the above tools (e.g., the master editor’s metadata, process language output of
the workflow editor (e.g., XPDL files)) for a specific RFID solution. Hence, the
solution description language will include a complete description of an RFID
solution. Along with this language the project should implement run-time
middleware engines, which will enable the translation of the solution language to
the various specification files (Reading specifications (e.g., ECSpecs), Master
Data, Connector Specifications, Logical Readers configuration files, LRSpec for
the LLRP protocol), which are required to deploy a specific solution over the
ASPIRE RFID middleware platform. Moreover, the engine will be able to carry out
the reverse process i.e. get as input the various configuration files (Reading

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 70/93

specifications (e.g., EPC-ALE ECSpecs), Master Data, Connector Specifications,
Logical Readers configuration files, LRSpec for the LLRP protocol) and use them
to build the ASPIRE specific solution language (e.g., an XML or XPDL based
description). In this way business users and/or consultants will be able to use the
workflow graphical editor to edit processes and accordingly to use them for
reconstructing the specifications required to deploy (the updated) solution to the
underlying ASPIRE middleware. The concept of specifications’ generation is
illustrated in Figure 16, which assumes that all the ASPIRE tools are unified and
integrated in an integrated development environment namely the IDE.

8.3.10 ASPIRE Tools Summary
The following table (Table 17) depicts the classification of F&C functionalities in
the above areas, also outlining some characteristic use cases where they are
needed. It is evident that the specified F&C layer addresses several key
requirements and use cases of Automatic identification applications.

ASPIRE Tool Key Functionalities Sample Use Cases
Physical Reader
Configuration Editor

Tool enabling access to
low-level functionalities
of a physical reader

• Configure a reader’s power
and/or read range

• Mange reader information
and configuration
parameters

Logical Reader
Configuration Editor

Tool enabling definition
of logical reader
configurations on the
basis on various
underlying physical
readers and antennas

• Build a logical reader
configuration (for a dock-
door portal) comprising X1
readers and Y1 antennas.

• Amend the above
configuration to include X2
readers (instead of X1) Y2
antennas (instead of Y1)_

Reading
Specifications Editor

Tool enabling
creation/editing and
deletion of reading
specifications.

• Configure filters to read only
tags of interest to the
particular
application/deployment.

• Configure particular tag
groupings to be reported in
the report.

F&C Commands
Execution

Tool enabling execution
of commands regarding
reading specifications on
the F&C server

• Establishing a reading
specification on the F&C
server

• Abolishing a reading
specification on the F&C
server.

Connector
Configurator

Configures connections
from the ASPIRE
middleware to legacy IT
systems and databases

• Define the connection to a
database and map
transactions to tables.

Master Data Editor Edit company data

including business
• Define a business processes

as a number of distinct

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 71/93

locations, readpoints
and business processes.

business steps each one
corresponding to an event.

• Define an hierarchical tree of
business locations.

Business Process
Management /
Workflow
Management Tool

Allow companies (SMEs)
to compose complex
RFID business
processes, as workflows
of elementary business
processes.

• Create, edit, delete
processes flows comprising
RFID enabled operations.

• Create hierarchical business
processes.

Table 17: Classification of ASPIRE Tooling Specifications and Associated Use Cases

The above table does not include or refer to the ASPIRE privacy tool, which is
described later in the document.

8.4 Privacy Framework and Tool (in accordance to Deliverable D2.5)
The ASPIRE IDE should be implemented using privacy friendly algorithms and
techniques in their design. Thus, allowing for the principal of ePrivacy and other
Data Protection Directives to be upheld when used to construct RFID solutions by
RFID consultants. Hence, ASPIRE would be able to deliver a middleware that is
privacy friendly and protects personal and sensitive data.

Management tools implemented within ASPIRE IDE would allow third parties to
easily build and deploy RFID solutions with minimal programming and
configuration efforts required. This would be done through simply specifying
company data, processes, transactions, products, etc. In addition, the Integrated
Development Environment would encompass editing tools that allow with
specification and configuration of the middleware functionalities. Since the IDE
manages and edits all components it is beneficial that the IDE is programmed to
be capable of handling most of the privacy concerns at the software level itself.

8.4.1 Compliance with data quality principal (limiting collection of personal data)
ASPIRE aims to create a middleware that would allow building of privacy friendly
RFID solutions by collecting minimalist data of sensitive or personal nature.
Therefore first it is important for the system to identify what type of data is
personal or sensitive and avoid collection of such data. This is done so by
utilizing the master data specified by the consultants building an RFID solution,
to analyse the context and ensuring privacy concerns are met by not collecting
personal data or through restricting linkage between subject data and object
data. For example, in the context of a pharmaceutical, products would be
categorized as personal and/or sensitive and would not require after sales
services (i.e. warrantee). Therefore the middleware should adopt Anonymity
techniques specified in D2.5 to restrict the collection of the subjects’ data to
ensure the privacy of the consumers are met. On the other hand, if an
application constructed is for the use of an optical store whereby recording of the
consumers’ data along with its transaction is necessary, the middleware should
allow doing so. At the same time the middleware would trigger a privacy prompt
message and log the activity through the use of flags. This would have a twofold
benefit; allowing smooth and accurate auditing of the application during the

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 72/93

certification process, and permitting examination and correction of the process if
possible by administration and/or auditors.

Upon analyzing the context, the case requires products or services entail the
identification of the customer, the ASPIRE IDE should propose techniques such as
allocating usernames or random ids for customers. These usernames or Ids
should not be linked with any of the personal details of the consumer that could
lead the identification of the person or their personal details with the knowledge
of the username or id. For example, stores that would like to introduce loyalty
cards to provide its customers with offers that could benefit them would be able
to do so by not gathering any information of the customer and providing them
with services purely based on the records of its consumptions.

8.4.2 Compliance with Data Limitation and Conservation principals
In cases where personal and/or sensitive data is stored in repositories, the
ASPIRE IDE should be implemented in a way whereby it does not allow
processing of the collected information for unintended purposes. This is possible
by enabling ASPIRE IDE to control the access of fixed and programmable logic to
these database structures. Therefore the IDE should; first control how Business
Event Generator communicates to and from the Repository, second how the
repository communicates and sends data to ASPIRE connector applications and
thereafter. Algorithms and techniques such as encryption and vigilance of
personal data as specified in Deliverable 2.5 of Privacy Specifications can further
help limit the processing of data towards unintended purposes.

Furthermore, the ASPIRE IDE could also be programmed to produce cumulative
statistics whereby the program would calculate statistics without registering data
about individual transactions. This could further help companies perform certain
market or statistical analysis using its records without endangering the privacy of
its consumers. The ASPIRE IDE will also implement privacy alerts that would be
triggered/logged if any programmable logic is changed to access personal data
for unauthorised transactions and the ASPIRE administrator and external auditor
will be immediately notified.

ASPIRE IDE would also incorporate algorithms that that would not retain and/or
process personal data longer than necessary. Techniques such as include
automatic cleaning mechanisms which automatically delete any personal data
that is not required any more. For example once the warranty of the product is
over, company does not require to hold personal details of the customer.
Therefore algorithms should be defined to periodically scan data deleting
personal data no longer necessary. Furthermore, ASPIRE IDE should incorporate
various other algorithms specified in Deliverable 2.5 such as ‘In memory’
processing, Copy + Destroy, and Volatile Encryption to enforce conservation of
data.

The privacy framework should also incorporate techniques that filter out non
related data. For example solutions would not allow companies to record data
that are generated through tags unrelated to the organisation. This should be
implemented through appropriate configuration of the BEG. Since the BEG

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 73/93

applies business logic and interprets lower level events to business events from
data reports generated by the Filtering and Collection layer. Algorithms could be
implemented which would gather and delete data that the BEG could not
reconcile with the master data provided by the companies.

8.5 ASPIRE IDE Specifications Overview

8.5.1 Management Console Specifications
The following table summarizes the ASPIRE Management Console Specifications.
Implementation priority values from 1 to 5 with 5 being of most importance.

C/N Fields to be Implemented Priority
7.1 Management console 3

7.1.1 RFID readers 3
7.1.2 Reader Core proxy 3
7.1.3 F&C Server 3
7.1.4 BEG engine 3
7.1.5 EPCIS repository 3
7.1.6 Connector application 3

Table 18: Management Console Specifications requirement Overview

8.5.2 Tooling Specifications Requirement

The following table summarizes the ASPIRE Tooling Specifications.
Implementation priority values from 1 to 5 with 5 being of most importance.

C/N Fields to be Implemented Priority
7.2.1 ASPIRE IDE 4
7.2.2 Physical Reader Configuration 3
7.2.3 Logical Reader Configuration 4

7.2.3.1 LLRP readers 4
7.2.3.2 RP readers 4
7.2.3.3 HAL readers and 4
7.2.3.4 Simulator readers 4
7.2.4 Filtering Specifications Editor 5
7.2.5 F&C Commands Execution 4
7.2.6 Master Data Editor 5

7.2.6.1 Business dispositions 5
7.2.6.2 Business steps 5
7.2.6.3 Business transactions 5
7.2.6.4 Transactions type 5
7.2.6.5 Business locations 5
7.2.6.6 Read Points 5
7.2.7 Connector Operations 3
7.2.8 Workflow Management Editor 4

Table 19: Tooling Specifications Overview

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 74/93

9 Conclusions

This deliverable has elaborated on the main specifications of the main
functionalities of the ASPIRE middleware. In particular, it has provided
specifications for a wide range of middleware modules spanning the areas of
reader access, filtering and collection, automated business events generation,
information sharing, as well as interfacing with legacy enterprise applications.
Several of these specifications have been directly derived from EPC standards
with a view to capitalizing on EPC’s specification work. However, we have also
outlined and specified additional middleware functionalities that extend
significantly EPC’s work in the area of RFID middleware. Prominent examples of
such middleware functionalities lie in the area of business event generations and
connectors for interfacing to legacy enterprise applications. In conjunction with
Deliverables D2.5 (dealing with privacy specifications), Deliverable D3.2 (dealing
also with TDT (tag data translation)) and Deliverable 3.1 (establishing the
project’s licensing schemes), the present deliverables establishes the main
specifications for a lightweight, privacy-friendly, open-source, integrated
middleware for RFID solutions.

Apart from middleware specifications, the present deliverable has elaborated on
the functionality of a number of tools for facilitating integrated development,
deployment and configuration of RFID solutions. These tools account for a wide
range of unique features in RFID tooling, with prominent examples in the areas
of business process management and integrated development. Furthermore, we
have outlined the need for end-to-end infrastructure management and have
specified associated (JMX based) solutions.

The specifications provided in this document manifest the both the complexity
and versatility of the ASPIRE middleware platform and tools. Further to actively
contributing and boosting their implementation, the ASPIRE consortium aims at
involving skilful community contributors, which could engage in implementing the
specifications contained in this deliverable. In this sense, this deliverable could
serve as a valuable guide not only to ASPIRE developers, but also to potential
contributors of the AspireRfid project. While we cannot rule out the
implementation of features that are not part of this document, we think that the
introduced specifications establish a sound basis for a novel and versatile
middleware platform.

A next step in the evolution of the ASPIRE project, is the specification of a
complete solution language that will could capture (in a declarative fashion) all
the functionalities supported by the ASPIRE development and management tools.
The specification of such a language, along with an associated run-time
middleware engine for decoding and executing solutions written in this language,
will formalise the programmability of the project. Furthermore, it will contribute
to the openness of the project, through allowing third-parties to create open-
source tools that can manipulate the ASPIRE solutions specifications. This is
because the ASPIRE solutions language will be amenable by tools. Hence, this

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 75/93

deliverable paves the ground for the evolution of the ASPIRE programmability
tasks, as part of WP4 of the ASPIRE project.

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 76/93

10 - Acronyms

ASPIRE Advanced Sensors and lightweight Programmable middleware for

Innovative Rfid Enterprise applications
BEG Business Event Generation
BPM Business Process Management
DCI Discovery Configuration and Initialization
ebXML Electronic Business using eXtensible Markup Language
EDI Electronic Data Interchange
EPC Electronic Product Code
EPCIS EPC Information Services
ERP Enterprise Resource Planning
F&C Filtering and Collection
HAL Hardware Abstraction Layer
HIPAA Health Insurance Portability and Accountability Act
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
IS Information Systems
ISO International Standards Organization
IT Information Technology
J2EE Java 2 Platform Enterprise Edition
JCA Java EE Connector Architecture
JCP Java Community Process
J2ME Java 2 Platform Micro Edition
JDBC Java Database Connectivity
JMX Java Management Extensions
JSR Java Specification Request
JVM Java Virtual Machine
LGPL Lesser General Public License
LLRP Low Level Reader Protocol
LR Logical Reader
OSS Open Source Software
OW2 ObjectWeb Consortium and Orientware
RFID Radio Frequency Identification
ROI Return Of Investment
RP Reader Protocol
SCM Supply Chain Management
SME Small and Medium Enterprises
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SQL Structured Query Language
TCP Transfer Control Protocol
UHF Ultra High Frequency
UML Unified Modeling Language
URI Uniform Resource Identificator
WSDL Web Service Definition Language
WMS Warehouse Management System
XML Extensible Markup Language

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 77/93

11 List of Figures

Figure 1: Overview of the ASPIRE Middleware Architecture..14
Figure 2: ASPIRE Components..15
Figure 3: HAL Architectural Overview ..21
Figure 4: ASPIRE HAL Connections ..21
Figure 5: Example of LLRP procedures to be supported by the ASPIRE low-cost reader.....25
Figure 6 Filtering and Collection (ALE)...33
Figure 7 Asynchronous reports from a standing request (according to [19])..........................34
Figure 8 On-demand report from a standing request [19] ..34
Figure 9: Synchronous report from one-time request [19]..34
Figure 10: Tag smoothing finite state machine diagram (according to [2]).............................42
Figure 11 Query Control and Callback Interface relationship [8]..49
Figure 12 The Business Event Generation (BEG) stands between the F&C and Information
Sharing Layers ...55
Figure 13 Overview of a Connector Application and its positioning in the ASPIRE architecture
...59
Figure 14 Overview of JMX Architecture [14] ...63
Figure 15 ASPIRE IDE management Architecture ...64
Figure 16 ASPIRE IDE Tools ...65
Figure 17: Description of Elementary RFID enabled Business Process67
Figure 18: Connecting Elementary RFID Business Processes to Composite Business
Processes- Process Management..69
Figure 19: Wider Business Process/Transactions Example...69

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 78/93

12 List of Tables

Table 1: SME requirements and related ASPIRE middleware or Tools Specifications18
Table 2: ASPIRE Middleware Building Blocks for various application categories19
Table 3: ASPIRE middleware specifications for EPC-RP support..27
Table 4: ASPIRE middleware specifications for EPC-LLRP support......................................30
Table 5: ASPIRE middleware specifications for EPC-RM support ...31
Table 6: High-Level Classification of F&C Specifications and Associated Use Cases...........36
Table 7: Specifications for Fieldnames, Data types and Formats ..44
Table 8: Tag Memory Specification API ...44
Table 9: Tag Reading Specifications..45
Table 10: Tag Writing Specifications..45
Table 11: Logical Reader Specifications ..46
Table 12: Specifications for Access Control to F&C Functionalities.......................................46
Table 13: F&C Management Specifications ...46
Table 14: Overview of Specifications for the ASPIRE Information sharing repository53
Table 15: BEG Specifications requirement Overview...57
Table 16: Connector Specifications Overview..62
Table 17: Classification of ASPIRE Tooling Specifications and Associated Use Cases71
Table 18: Management Console Specifications requirement Overview73
Table 19: Tooling Specifications Overview...73
Table 20: Creation of “Receiving” Transaction (TS Event)..83
Table 21: Creation of Objects in the Warehouse during “Receiving” and association with the
running transaction (i.e. “observing the transaction) ..84
Table 22: Objects Aggregation in appropriate containers within the Warehouse during
“Receiving” ...84
Table 23: Closing the “Receiving” Transaction..85
Table 24: Event for Objects leaving Wn and entering W0 or its parent Wm (e.g., when Wn is a
self)...85
Table 25: Event for Objects entering Wn from W0 or its parent Wm (e.g., assuming that Wn is a
self)...86
Table 26: Event for Aggregated Objects leaving Wn and entering W0 or its parent Wm (e.g.,
when Wn is a self)...86
Table 27: Event for Aggregated Objects entering Wn from W0 or its parent Wm (e.g.,
assuming that Wn is self) ..86
Table 28: Event for taking Objects out of a Container..87
Table 29: Event for packing Objects within a Container...87
Table 30: Event for Destroying Container Cn ...87
Table 31: Transaction Event signifying the commencement of the pick & pack process for an
order ...87
Table 32: Object Event denoting that an object is moved from a shelf88
Table 33: Aggregation Event denoting that an object is moved to a portable container (e.g.,
cart) ..88
Table 34: Aggregation Event for objects packed in (whole containers)..................................89
Table 35: Aggregation Event for placing objects in packed container Cm to a portable
container Cn (e.g., cart) ..89
Table 36: Transaction Event denoting that an object of the order is ready to be dispatched.89
Table 37: Transaction Event denoting that a group of objects (Cm) of the order is ready to be
dispatched ..89
Table 38: Aggregation Event denoting that a group of items are moved to W0......................90
Table 39: Aggregation Event denoting that a group of items are moved from W0 to warehouse
Ws...90

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 79/93

Table 40: Aggregation Event denoting that objects are moved out of the cart (Cn) (i.e.
aggregation deleted) ..90
Table 41: Aggregation Event denoting that a whole group of objects (Cm) (e.g., package) are
moved out of the cart (Cn) (i.e. aggregation deleted) ...91
Table 42: Packaging of objects within a container (Cn) ..91
Table 43: Objects leaving the Warehouse where WS where the shipment is conducted (i.e.
Object Event Delete) ..91
Table 44: Transaction Event for Objects that have been shipped..91
Table 45: Transaction event for concluding the order shipment process...............................92
Table 46: Automated Inventory of all objects within a warehouse Wn....................................92
Table 47: Transaction event denoting the commencement of the inventory (and the expected
situation)...92
Table 48: Transaction event denoting the completion of the inventory (and the reported
situation)...93

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 80/93

13 - References and bibliography
[1] FossTrak Project, http://www.fosstrak.org/index.html
[2] EPCglobal, “The Application Level Events (ALE) Specification, Version 1.1”,

February. 2008, available at: http://www.epcglobalinc.org/standards/ale
[3] EPCglobal, “Low Level Reader Protocol (LLRP), Version 1.0.1, August 13”,

2007, available at: http://www.epcglobalinc.org/standards/llrp
[4] EPCglobal, “Reader Protocol Standard, Version 1.1, June 21”, 2006 available

at: http://www.epcglobalinc.org/standards/rp
[5] EPCglobal, “Reader Management 1.0.1, May 31”, 2007 available at:

http://www.epcglobalinc.org/standards/rm
[6] EPCglobal, “EPCglobal Tag Data Standards, Version 1.4”, June 11, 2008,

available at: http://www.epcglobalinc.org/standards/tds/
[7] EPCglobal, “EPCglobal Tag Data Translation (TDT) 1.0”, January 21, 2006

available at: http://www.epcglobalinc.org/standards/tdt/
[8] EPC Information Services (EPCIS) Specification, Version 1.0.1, September 21,

2007 available at: http://www.epcglobalinc.org/standards/epcis/
[9] LLRP Toolkit, http://www.llrp.org/
[10] Matthias Lampe, Christian Floerkemeier, “High-Level System Support for

Automatic-Identification Applications”, In: Wolfgang Maass, Detlef Schoder,
Florian Stahl, Kai Fischbach (Eds.): Proceedings of Workshop on Design of
Smart Products, pp. 55-64, Furtwangen, Germany, March 2007.

[11] C.Floerkemeier, C. Roduner, and M. Lampe, RFID Application Development
With the Accada Middleware Platform, IEEE Systems Journal, Vol. 1, No. 2,
December 2007.

[12] C. Floerkemeier and S. Sarma, “An Overview of RFID System Interfaces
and Reader Protocols”, 2008 IEEE International Conference on RFID, The
Venetian, Las Vegas, Nevada, USA, April 16-17, 2008.

[13] Russell Scherwin and Jake Freivald, Reusable Adapters: The Foundation of
Service-Oriented Architecture, 2005.

[14] The XMOJO Project Product Documentation, available at:
http://www.jmxguru.com/products/xmojo/docs/index.html

[15] Java Management Extensions (JMX) Technology Overview, available at:
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/overview/architecture.html

[16] Panos Dimitropoulos and John Soldatos, ‘RFID-enabled Fully Automated
Warehouse Management: Adding the Business Context’, submitted to the
International Journal of Manufacturing Technology and Management (IJMTM),
Special Issue on: "AIT-driven Manufacturing and Management".

[17] Architecture Review Committee, “The EPCglobal Architecture Framework,”
EPCglobal, July 2005, available at: http://www.epcglobalinc.org.

[18] Achilleas Anagnostopoulos, John Soldatos and Sotiris G. Michalakos,
‘REFiLL: A Lightweight Programmable Middleware Platform for Cost Effective
RFID Application Development’, accepted for publication to the Journal of
Pervasive and Mobile Computing (Elsevier).

[19] Application Level Events 1.1(ALE 1.1) Overview, Filtering & Collection WG,
EPCglobal, March 5, 2008 , available at:
http://www.epcglobalinc.org/standards/ale

[20] WS-I, Basic Profile v1.0, available at: http://www.ws-
i.org/Profiles/BasicProfile-1.0-2004-04-16.html.

http://www.accada.org/index.html�
http://www.epcglobalinc.org/standards/ale�
http://www.epcglobalinc.org/standards/llrp�
http://www.epcglobalinc.org/standards/rp�
http://www.epcglobalinc.org/standards/rm�
http://www.epcglobalinc.org/standards/tds/�
http://www.epcglobalinc.org/standards/tdt/�
http://www.epcglobalinc.org/standards/epcis/�
http://www.llrp.org/�
http://www.jmxguru.com/products/xmojo/docs/index.html�
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/overview/architecture.html�
http://www.epcglobalinc.org/standards/ale�
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html�
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html�

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 81/93

[21] Benita M. Beamon, “Supply chain design and analysis: Models and
methods”, International Journal of Production Economics, Vol. 55 pp. 281-
294, 1998

[22] Zhekun Li, Rajit Gadh, and B. S. Prabhu, "Applications of RFID Technology
and Smart Parts in Manufacturing", Proceedings of DETC04: ASME 2004
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference September 28-October 2, 2004, Salt Lake City, Utah
USA.

[23] JSR 256, “Mobile Sensor API”, available at:
http://jcp.org/en/jsr/detail?id=256

[24] JSR 275, “Units Specification”, available at:
http://jcp.org/en/jsr/detail?id=275

[25] JSR 179, “Location API for J2ME”, available at:
http://jcp.org/en/jsr/detail?id=179

[26] JSR 257, “Contactless Communication API”, available at:
http://jcp.org/en/jsr/detail?id=257

http://jcp.org/en/jsr/detail?id=256�
http://jcp.org/en/jsr/detail?id=275�
http://jcp.org/en/jsr/detail?id=179�

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 82/93

Appendix A - Example of Business Event and
Processes in Warehouse Management)

In this section we illustrate the concept of business events for key warehouse
management processes, based on the EPCIS framework. We focus on common
processes such as receiving, shipping, moving, pick & pack, as well as inventory
and envisage that the provided descriptions could be reusable across multiple
enterprises. Note that we currently emphasize on these processes in the scope of
closed loop enterprise systems concerning a single enterprise and intra-
enterprise transactions, rather than open loop systems spanning multiple
business partners and cross enterprise transactions. Our starting point is to
formulate the company’s structure and warehouses, which is a key prerequisite
to populating user-created identifiers (e.g., read points and business locations) of
the EPC-IS framework.

A.1 Taxonomy of Warehouses and Containers
Consider a typical enterprise possessing a number of logical spaces identified as
Warehouses (Wn (n = 0, 1, 2,…)). We also assume that these warehouses are
organized in a hierarchical manner in a way that each warehouse is contained
within another warehouse or equivalently each warehouse has one parent
warehouse. We define as W0 the (logical) central warehouse of the company,
which has no parent warehouse. Therefore, all warehouses can be collectively
aggregated under W0, which can be considered as a physical central warehouse
or the company itself. Moreover, child logical warehouses may correspond to
physical warehouses or other units of storing capacity down the hierarchy (e.g.,
selves that are contained within a physical warehouse space).

Warehouse management processes associated with the company’s products are
carried out based on appropriately tagged containers (Cn (n = 0, 1, 2,…,)).
Different types of containers are typically used e.g., pallets, carton boxes, carts,
containers. Similarly to logical warehouses containers are organized in an
hierarchical fashion, which allows containers (e.g., pallets) to contain other
containers (e.g., carton boxes). Furthermore, a container is situated to a parent
logical warehouse. A container (Cn) is contained in a warehouse, as soon as this
warehouse contains a parent container of (Cn), which allows us to infer locations
for child containers.

Since both containers and logical warehouses can contain other containers
and/or items, it makes sense to distinguish between container and logical
warehouses. The key difference is that when items within a container move, the
container moves as well, whereas when items within a logical warehouse move,
the logical warehouse does not move. Likewise, one logical warehouse has
typically one parent object (i.e. the parent warehouse), while a container has
typically two parent objects (i.e. a parent warehouse and a parent container).

A.2 Examples of Elementary Business Processes

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 83/93

A2.1 Receiving

An indicative RFID-enabled reception of goods process within a warehouse WR is
described through the EPCIS events listed in Table 20, Table 21, Table 22 and
Table 23. It is assumed that WR is equipped with (one or more) RFID dock door
portals. Items and containers pass through these portals in the scope of the
“receiving” process. The process starts with a transaction event, which signifies
the commencement of the receiving process and assigns an identifier to the
transaction instance (BTn) (Table 20). Note that this identifier enables the
connection of the transaction with expected goods (listed within the company’s
WMS) for this particular receiving process. The transaction event will be inserted
into the EPCIS repository, prior to the appearance of goods. The transaction start
event will be typically associated with a dispatch (consignment) note (or delivery
note) regarding the expected items.

Subsequent events denote that objects are received within the warehouse.
Objects correspond to items, as well as containers. An object event is issued to
identify the received objects, while a transaction event is also created to denote
that the “receiving” transaction is in progress (Table 21). The event includes also
information about the Business Location i.e. the warehouse (e.g., WR)), where
the reception of goods takes place. Furthermore, the transaction event denotes
the status of the received goods, as well as the related business step where
these good were observed during receiving.

Event Description

EventType Time bizStepID dispositionID

TransactionEvent Time Null Dn

BizLocationID readPointID EPC parentEPC

Null Null <EPC List> null

Action bizTransactionTypeID bizTransactionID

Add Null BTn
Table 20: Creation of “Receiving” Transaction (TS Event)

Event Description

eventType Time bizStepID dispositionID

ObjectEvent Time Null null

bizLocationID readPointID EPC parentEPC

WR Null <EPC List> null

Action bizTransactionTypeID bizTransactionID

add Null Null

Event Description

eventType Time bizStepID dispositionID

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 84/93

TransactionEvent Time Dn Dm

bizLocationID readPointID EPC ParentEPC

null Null <EPC List> null

Action bizTransactionTypeID bizTransactionID

observed Null BTn
Table 21: Creation of Objects in the Warehouse during “Receiving” and association with the running

transaction (i.e. “observing the transaction)

Table 22 describes the aggregation event which is accordingly issued in order to
associate items with containers during the “receiving” process. The aggregation
event identifies also the business location and the read-point, where the
aggregation of objects into containers tools place. Note that additional
aggregations can occur (e.g., aggregation of carton boxes to pallets). To capture
these aggregations based on an RFID-enabled system, the pallets need to pass
from an additional RFID dock-door portal, which can enable the issuance of
additional aggregation events. This two level physical process (i.e. aggregation
into boxes and subsequent aggregation into pallets) is therefore totally reflected
in the issued aggregation events.

Event Description

eventType Time bizStepID dispositionID

AggregationEvent Time Null Null

bizLocationID readPointID EPC parentEPC

WR WR <EPC List> EPC

Action bizTransactionTypeID bizTransactionID

Add Null Null
Table 22: Objects Aggregation in appropriate containers within the Warehouse during “Receiving”

The “receiving” process is concluded when all items (assigned to this particular
transaction) have entered WR via one of the available RFID dock door portals. At
this point the RFID system will issue a transaction finish event, which will contain
the full list of received items. Note that this may or may not be the same list
specified within the transaction start events. Items expected but not received will
not be reported. The transaction finish event will be accompanied by the issuance
of a delivery receipt from the WMS system, based on the information contained
in the EPCIS repository.

Event Description

eventType Time bizStepID dispositionID

TransactionEvent Time Null null
bizLocationID readPointID EPC parentEPC

Null Null <EPC List> null

Action bizTransactionTypeID bizTransactionID

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 85/93

Delete Null BTn
Table 23: Closing the “Receiving” Transaction

A2.2 Moving within Logical Warehouses

The process of tracking items and correctly recording their state as they move
within the company’s warehouse relies on the logical partitioning of the company
into multiple warehouses. Typically, goods that are moved between logical
warehouses of the company have been gracefully received previously and are
considered part of W0. During the moving procedure it is important to understand
whether an object enters or leaves a warehouse through an RFID dock-door
portal. To this end, the lower layers of the RFID system (e.g., the physical
readers) must also report the directionality of the “moving” process for a
particular item (i.e. “in” or “out”). An object identified to move out of a logical
warehouse during the “move”, may either be detected to enter another logical
warehouse, or may just remain associated with the parent logical warehouse W0.
Note also that moving goods between selves or carts is possible. Such movement
is likely to be detected by mobile readers rather than dock-door portals.

Events that can be used to add business context to the “moving” process are
depicted in Table 24, Table 25, Table 26, Table 27, Table 28, Table 29, Table 30,
which add the business context of the key “moving” processes. In particular,
Table 24 described the object event that is issued when an item is moved out of a
logical warehouse (e.g., for packaging). It covers also the case where an item is
removed from a self. Similarly, Table 25 conveys the dual process, i.e. moving an
item towards a logical warehouse from another logical warehouse, which is
higher in the hierarchy.

Event Description

eventType Time bizStepID dispositionID

ObjectEvent Time Null Null

bizLocationID readPointID EPC parentEPC

W0, Wm Wn <EPC List> Null

Action bizTransactionTypeID bizTransactionID

Observed Null Null
Table 24: Event for Objects leaving Wn and entering W0 or its parent Wm (e.g., when Wn is a self)

 Event Description

eventType Time bizStepID dispositionID

ObjectEvent Time Null Null

bizLocationID readPointID EPC ParentEPC

Wn Wm, W0 <EPC List> Null

Action bizTransactionTypeID bizTransactionID

Observed Null Null

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 86/93

Table 25: Event for Objects entering Wn from W0 or its parent Wm (e.g., assuming that Wn is a self)

Table 26 and Table 27 illustrate aggregation events that have to be issued in case
when an item is moved within a container. Specifically, Table 26 refers to the
case when a container leaves a logical warehouse for another warehouse,
whereas Table 27 describes the event that has to be generated by the RFID
System in cases when a container is inserted into the target logical warehouse.
In both cases aggregation observed events are generated.

 Event Description

EventType Time bizStepID dispositionID

AggregationEvent Time Null Null

bizLocationID readPointID EPC parentEPC

W0, Wm Wn <EPC List>, null null, EPC

Action bizTransactionTypeID bizTransactionID

Observed null Null
Table 26: Event for Aggregated Objects leaving Wn and entering W0 or its parent Wm (e.g., when Wn is
a self)

Event Description

eventType Time bizStepID dispositionID

AggregationEvent Time null Null

bizLocationID readPointID EPC parentEPC

Wn W0, Wm <EPC List>, null null, EPC

Action bizTransactionTypeID bizTransactionID

Observed Null Null
Table 27: Event for Aggregated Objects entering Wn from W0 or its parent Wm (e.g., assuming that Wn
is self)

The “moving” process requires issuance of events that assign business context in
cases where items are taken out of a container (Table 28), as well as in cases
where objects are packaged in the container (Table 29). In these cases
aggregations have to be deleted and created respectively. Finally, Table 30
illustrates the event where a container Cn is destroyed in which case another
aggregation event has to be issued.

Event Description

eventType Time bizStepID dispositionID

AggregationEvent Time Null null

bizLocationID readPointID EPC parentEPC

Null null <EPC List> Cn

Action bizTransactionTypeID bizTransactionID

Delete Null Null

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 87/93

Table 28: Event for taking Objects out of a Container

Event Description

eventType Time bizStepID dispositionID

AggregationEvent Time Null null

bizLocationID readPointID EPC parentEPC

Null null <EPC List> Cn

Action bizTransactionTypeID bizTransactionID

Add null Null
Table 29: Event for packing Objects within a Container

 Event Description

eventType Time bizStepID dispositionID

AggregationEvent Time Null null

bizLocationID readPointID EPC parentEPC

Null Null Null Cn

action bizTransactionTypeID bizTransactionID

delete Null Null
Table 30: Event for Destroying Container Cn

A2.3 Order Collection - Pick & Pack

Another common warehouse management process concerns the order collection
(pick & pack). We consider a typical pick & pack process that hinges on the
existence of an order note. Based on the order note an order collection note
comprising the ordered item is also issued. The order collection note is
associated with a transaction start event (Table 31). The order collection note list
the individual items contained in the order. Moreover, it can also contain
container codes, in the case where the items in the order are entirely contained
within a container.

 Event Description

eventType Time bizStepID dispositionID

TransactionEvent Time Null Dn

bizLocationID readPointID EPC parentEPC

Null Null <EPC List> null

Action bizTransactionTypeID BizTransactionID

Add Null BTn
Table 31: Transaction Event signifying the commencement of the pick & pack process for an order

The order collection occurs within portable containers (e.g., carts). Objects are
removed from the selves (Table 32) and aggregated to the carts (Table 33). Note

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 88/93

that during this collection processes it is possible to automatically check for
errors e.g., in cases where an object that is not listed in the order note is
removed from the self. As already outlined except for individual items, the order
collection process may pick whole containers (e.g., boxes), as soon as these are
part of the order collection process. This is denoted by an aggregation observed
event (Table 34). Furthermore, Table 35 depicts a new aggregation event denoting
that a whole package is put within the portable container during the order
collection process.

 Event Description

eventType Time bizStepID dispositionID

ObjectEvent Time Null Null

bizLocationID readPointID EPC parentEPC

Wm Wn <EPC List> Null

Action bizTransactionTypeID BizTransactionID

Observed Null Null
Table 32: Object Event denoting that an object is moved from a shelf

 Event Description

eventType Time bizStepID dispositionID

AggregationEvent Time Null Null

bizLocationID readPointID EPC parentEPC

Null Null <EPC List> Cn

Action bizTransactionTypeID BizTransactionID

Add Null Null
Table 33: Aggregation Event denoting that an object is moved to a portable container (e.g., cart)

Table 36 and Table 37 describe transaction events that are issued to declare the
progress of the collection process. These denote the items (Table 36), as well as
the whole containers (Table 37) that are already collected and ready to be shipped
in the scope of the pick & pack process. Finally, Table 38 and Table 39 describe
aggregation events issued as individual items or whole containers are moved out
of the originating warehouse (to W0) and from W0 to the shipping warehouse (Ws)
respectively.

 Event Description

EventType Time bizStepID dispositionID

AggregationEvent Time Null Null

bizLocationID readPointID EPC parentEPC

Wm Wn null Cm

Action bizTransactionTypeID bizTransactionID

Observed Null Null

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 89/93

Table 34: Aggregation Event for objects packed in (whole containers)

 Event Description

eventType Time bizStepID DispositionID

AggregationEvent Time Null Null

bizLocationID readPointID EPC ParentEPC

Null Null Cm Cn

Action bizTransactionTypeID bizTransactionID

Add Null Null

Table 35: Aggregation Event for placing objects in packed container Cm to a portable container Cn
(e.g., cart)

Event Description

eventType Time bizStepID dispositionID

TransactionEvent Time Dm Dn

bizLocationID readPointID EPC parentEPC

null Null <EPC List> Null

Action bizTransactionTypeID bizTransactionID

observed Null BTn

Table 36: Transaction Event denoting that an object of the order is ready to be dispatched

Event Description

eventType Time bizStepID dispositionID

TransactionEvent Time Dm Dn

bizLocationID readPointID EPC parentEPC

Null Null null Cm

Action bizTransactionTypeID bizTransactionID

Observed Null BTn

Table 37: Transaction Event denoting that a group of objects (Cm) of the order is ready to be
dispatched

 Event Description

eventType Time bizStepID dispositionID

AggregationEvent Time Null Null

bizLocationID readPointID EPC parentEPC

W0 Null <EPC List> Null

Action bizTransactionTypeID bizTransactionID

Observed Null null

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 90/93

Table 38: Aggregation Event denoting that a group of items are moved to W0

 Event Description

EventType Time bizStepID dispositionID

AggregationEvent Time Null null

BizLocationID readPointID EPC parentEPC

WS W0 <EPC List> null

Action bizTransactionTypeID bizTransactionID

Observed Null Null

Table 39: Aggregation Event denoting that a group of items are moved from W0 to warehouse Ws

A2.4 Order Shipment

The events that provide the business context for the order shipment process are
depicted in Table 40, Table 41, Table 42, Table 43, Table 44, and Table 45. This business
process takes place in the scope of the “shipping” warehouse (WS), where
products that have to be shipped are assembled. Shipping hinges on logistically
moving items and containers (with items) out of warehouse WS. Based on the
order collection process items and containers have been put within carts. In the
scope of the order shipment process these aggregations are deleted (Table 40,
Table 41) i.e. items and containers are moved out of the pick & pack carts.
Accordingly, new aggregation events (Table 42) signifying the creation of packing
lists for the shipment process. Once packing lists are complete, the objects are
moved out of the warehouse (WS), which is signified through object delete events
(i.e. the objects are no longer in the warehouse) (Table 43). Also transaction
events are issued to convey and control the status of the process. In particular,
transaction observed events (Table 44) provide insight on the objects that have
been shipped, whereas a transaction finish event (Table 45). During the issuance
of the transaction finish event, the system can automatically check whether the
packing list coincides with the shipment list, which signifies the graceful
completion of the order shipment process.

 Event Description

EventType Time bizStepID dispositionID

AggregationEvent Time Null Null

bizLocationID readPointID EPC parentEPC

Null Null <EPC List> Cn

Action bizTransactionTypeID bizTransactionID

Delete Null null

Table 40: Aggregation Event denoting that objects are moved out of the cart (Cn) (i.e. aggregation
deleted)

 Event Description

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 91/93

EventType Time bizStepID dispositionID

AggregationEvent Time null null

bizLocationID readPointID EPC parentEPC

Null Null Cm Cn

Action bizTransactionTypeID bizTransactionID

Delete

Null Null

Table 41: Aggregation Event denoting that a whole group of objects (Cm) (e.g., package) are moved
out of the cart (Cn) (i.e. aggregation deleted)

 Event Description

EventType Time bizStepID dispositionID

AggregationEvent Time null null

bizLocationID readPointID EPC parentEPC

WS WS <EPC List> Cn

Action bizTransactionTypeID bizTransactionID

Add Null null

Table 42: Packaging of objects within a container (Cn)

Event Description

EventType Time BizStepID dispositionID

ObjectEvent Time Null null

bizLocationID readPointID EPC ParentEPC

Null WS <EPC List> null

Action bizTransactionTypeID bizTransactionID

Delete Null Null

Table 43: Objects leaving the Warehouse where WS where the shipment is conducted (i.e. Object
Event Delete)

 Event Description

EventType Time bizStepID dispositionID

TransactionEvent Time Dm Dn

bizLocationID readPointID EPC parentEPC

Null Null <EPC List> Null

Action bizTransactionTypeID bizTransactionID

Observed Null BTn

Table 44: Transaction Event for Objects that have been shipped

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 92/93

Event Description

eventType Time bizStepID dispositionID

TransactionEvent Time Dn Null

bizLocationID readPointID EPC parentEPC

Null null <EPC List> Null

Action bizTransactionTypeID bizTransactionID

Delete Null BTn

Table 45: Transaction event for concluding the order shipment process

A2.5 Inventory

Inventory is a very common and important process for warehouse management.
RFID enabled automated inventory is (at the EPCIS level) carried out based on
an object event listing all the objects that are scanned and/or detected in the
warehouse selves (e.g., via mobile readers) (Table 46). Note that object observe
events having a bizLocationID identical to the readPointD signify that objects are
simply observed and not moved in the same warehouse. Note also that a
transaction start (Table 47), as well as a transaction finish (Table 48) events provide
identity to the inventory process and specify its boundaries. The transaction start
event includes also the list (<EPC List>) of expected items, whereas the
transaction finish event includes the list (<EPC List>) of actually observed items.

Event Description

EventType Time bizStepID dispositionID

ObjectEvent Time null Null

bizLocationID readPointID EPC parentEPC

Wn Wn <EPC List> Null

Action bizTransactionTypeID bizTransactionID

Observe Null Null

Table 46: Automated Inventory of all objects within a warehouse Wn

Event Description

eventType Time bizStepID dispositionID

TransactionEvent Time Null Dn

bizLocationID readPointID EPC parentEPC

null Null <EPC List> null

action bizTransactionTypeID bizTransactionID

add Null BTn

Table 47: Transaction event denoting the commencement of the inventory (and the expected situation)

Contract: 215417
Deliverable report – WP2/ D2.4

ID: ASPIRE_D2.4_V1.4_Final Date: 30 September 2008
Revision: 1.4 Security: Restricted
 Page 93/93

Event Description

eventType Time bizStepID dispositionID

TransactionEvent Time Dn Null

bizLocationID readPointID EPC parentEPC

null Null <EPC List> Null

action bizTransactionTypeID bizTransactionID

delete Null BTn

Table 48: Transaction event denoting the completion of the inventory (and the reported situation)

A.3 Complex Business Process
In order to provide a more general framework for handling RFID enabled logistics
possesses this deliverable suggests encoding the above events within a
processes description that could be amenable by graphical tools. To this end, it is
possibly to use the master data concept in order to encode business locations,
read points, logical warehouses, containers, disposition states, as well as event
and business steps sequences. Having a business processes encoded as master
data, it could be possible to offer to business users and RFID consultants a
graphical user interface for manipulating the definition of the various business
transactions and their associated business steps.

The logistics processes outlined above can operate in a totally independent
fashion, which provides opportunities for incremental deployment and smooth
transition from legacy manual non-RFID processes. Incremental deployment can
lower a company’s entry costs, while boosting its understanding and experience
with respect to RFID technology. Note however that the implementation of all the
processes, along with their integration (e.g., connecting the pick & pack with the
shipment process) can enable higher degrees of automation and efficiency,
overall yielding a multiplicative benefit. Hence, moving at a higher business
processes management level, it is possible to define how individual business
transactions and processes are connected and/or integrated in the scope of wider
process. Such higher level Business Processes Management (BPM) can be
supported by conventional BPM tools, as described in the ASPIRE BPM framework
that has been illustrated in this deliverable.

	Table of Contents
	Executive summary
	1 Introduction
	2 Middleware Specifications
	2.1 Relationship to the ASPIRE Architecture
	2.2 ASPIRE Architecture vs. EPC Global Architecture
	2.3 Classification of Middleware Specifications
	2.4 Relationship to End-Users (SMEs) Requirements
	2.5 Middleware Building Blocks and ASPIRE applications

	3 Reader Access Specifications
	3.1 Overview
	3.2 Hardware Abstraction Layer (HAL)
	3.2.1 Core Reader
	3.2.2 EPC-RP Support
	3.2.3 EPC-LLRP Support
	3.2.4 NFC Reader Support

	3.3 ASPIRE Low-Cost Reader Specifications
	3.4 Reader Access Specifications Requirements overview

	4 Filtering and Collection Specifications
	4.1 Overview
	4.2 F&C Specifications
	4.2.1 Supported Fieldnames, Data types, and Formats
	Extensions for sensors data

	4.2.2 Accessing/Configuring/Managing Tag Memory
	4.2.3 Reading Tags - Reading API
	4.2.4 Writing to Tags - ALE Writing API
	4.2.5 Managing Logic Readers - ALE Logical Reader API
	4.2.6 Access Control to F&C Functionalities
	4.2.7 ALE Management

	4.3 ASPIRE ALE API Specifications Requirements overview
	4.3.1 Fieldnames, Data types, and Formats
	4.3.2 Tag Memory Specification API (According to EPC ALE)
	4.3.3 Reading API
	4.3.4 Tag Writing Specification
	4.3.5 Logical Reader API
	4.3.6 Access Control API
	4.3.7 ALE Management

	5 Information Sharing Repository and Services Specification
	5.1 Overview
	5.2 Specification of Information Sharing Data Model
	5.3 Information Sharing Services Specifications
	5.3.1 Capture Operations
	5.3.1.1 Authentication and Authorization
	5.3.1.2 Event Capture
	5.3.1.3 Master Data Capture Service

	5.3.2 Query Operations
	5.3.2.1 Authentication
	5.3.2.2 Authorization
	5.3.2.3 Queries for Large Amounts of Data
	5.3.2.4 Overly Complex Queries
	5.3.2.5 Query Framework
	5.3.2.6 Error Conditions
	5.3.2.7 Predefined Queries for Information Sharing
	5.3.2.7.1 Simple Event Query
	5.3.2.7.2 Simple Master Data Query

	5.3.2.8 Query Callback Interface

	5.3.3 Bindings for Capture and Query Operations
	5.3.4 Management of Information Sharing Repository and Processes

	5.4 Information Sharing Specifications Overview

	6 Business Event Generation Specifications
	6.1 Overview
	6.2 BEG Engine Specification
	6.2.1 BEG to F&C bindings
	6.2.2 BEG to Information Sharing bindings
	6.2.3 Access/Collect required Master Data
	6.2.4 Reports Processing
	6.2.5 Authentication and Authorization
	6.2.6 BEG Management
	6.2.7 Graphical User Interface

	6.3 BEG Specifications Overview

	7 Connector Specifications
	7.1 Overview
	7.2 Connector Specifications
	7.2.1 Adapter Framework
	7.2.1.1 Standard Adapters for Information Exchange – Information Exchange Semantics
	7.2.1.2 Standard interfaces – Application and Data Adapters
	7.2.1.3 Custom tooling for application platform suites
	7.2.1.4 Transaction processing adapters

	7.2.2 Graphical User Interface
	7.2.3 Connector to Various Systems ERPs bindings
	7.2.4 Connector to Various RDBMS
	7.2.5 Connector to ASPIRE Information Sharing repository and services
	7.2.6 Connector to F&C bindings
	7.2.7 Authentication and Authorization
	7.2.8 Connector Management

	7.3 Connector Specifications Overview

	8 ASPIRE IDE and Tools Specifications
	8.1 Overview
	8.2 Management Console Specifications
	8.3 Tooling Specifications
	8.3.1 ASPIRE IDE
	8.3.2 Physical Reader Configuration Editor
	8.3.3 Logical Reader Configuration Editor
	8.3.4 Reading Specifications Editor
	8.3.5 F&C Commands Execution
	8.3.6 Connector Configurator
	8.3.7 Master Data Editor (with support for Elementary Business Process Description)
	8.3.8 ASPIRE Business Process Management and Workflow Management Editor for Composite Business Processes
	8.3.9 ASPIRE Programmability Engine
	8.3.10 ASPIRE Tools Summary

	8.4 Privacy Framework and Tool (in accordance to Deliverable D2.5)
	8.4.1 Compliance with data quality principal (limiting collection of personal data)
	8.4.2 Compliance with Data Limitation and Conservation principals

	8.5 ASPIRE IDE Specifications Overview
	8.5.1 Management Console Specifications
	8.5.2 Tooling Specifications Requirement

	9 Conclusions
	10 - Acronyms
	11 List of Figures
	12 List of Tables
	13 - References and bibliography
	Cn

